簡易檢索 / 詳目顯示

研究生: 陳郁緁
Chen, Yu-Jie
論文名稱: 正子斷層掃描統計影像重建的階層式貝氏OSL演算法
A Hierarchical Bayesian OSL Algorithm for Positron Emission Tomography Statistical Image Reconstruction
指導教授: 許文郁
Shu, Wun-Yi
口試委員: 胡毓彬
吳宏達
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 37
中文關鍵詞: 統計影像重建法OSL演算法ICM演算法Gibbs priorHierarchical Bayesian model
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 正子斷層掃描為現今重要醫學診斷工具之一,而其影像需利用統計方法重建。
    本篇論文延續以往利用類似EM 演算法求取最大概似估計量的方式來進行影
    像重建。我們提出了一種新的影像重建方法,將階層式貝氏架構與一種改良的
    EM 演算法-OSL 演算法相結合,其不僅考慮了相近亮度部位應平滑的概念,更
    加入影像之間的權重以避免過度平滑,使影像邊緣得以保留。此種重建法會以
    模擬的方式來進行說明並與其他方法比較。


    Positron Emission Tomography (PET) is one of the most important techniques for
    medical diagnosis. The statistical methods are needed in image reconstruction for
    PET. In this dissertation we develop a new approach to the reconstruction of the
    image. We use hierarchical Bayesian model to describe how the observations are
    obtained and apply a modied EM-type approach, the one-step-late algorithm, to
    calculate the maximum likelihood estimate for the emission intensity at each pixel.
    This method take care of both smoothness and edge eects of the image simulta-
    neously. Finally the performance of this method is demonstrated and compared
    with other methods by computer simulations.

    第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 第二章統計模型. . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 正子斷層儀結構. . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 影像系統模型. . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 基礎統計架構. . . . . . . . . . . . . . . . . . . . . . . . . 6 2.4 貝氏模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.5 階層式貝氏模型. . . . . . . . . . . . . . . . . . . . . . . . 9 第三章影像重建演算法. . . . . . . . . . . . . . . . . . . . . . . 12 3.1 ICM 演算法估計程序. . . . . . . . . . . . . . . . . . . . . 12 3.2 Weight 參數之MAP估計. . . . . . . . . . . . . . . . . . . . 13 3.3 參數λ 之MAP估計. . . . . . . . . . . . . . . . . . . . . . 15 3.4 演算法的執行. . . . . . . . . . . . . . . . . . . . . . . . . 19 第四章模擬範例. . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 資料模擬方法. . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 重建影像展示. . . . . . . . . . . . . . . . . . . . . . . . . 21 第五章結論與未來研究方向. . . . . . . . . . . . . . . . . . . . . 33 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 5.2 未來研究方向. . . . . . . . . . . . . . . . . . . . . . . . . 34 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

    [1] L. A. Shepp and Y. Vardi, "Maximum Likelihood Reconstruction for Emis-
    sion Tomography," Medical Imaging, IEEE Transactions on, vol. 1, pp. 113 -122,
    oct. 1982.
    [2] S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and
    the Bayesian Restoration of Images," Pattern Analysis and Machine Intelligence,
    IEEE Transactions on, vol. PAMI-6, pp. 721 -741, nov. 1984.
    [3] P. J. Green, "Bayesian reconstructions from emission tomography data using
    a modied EM algorithm," Medical Imaging, IEEE Transactions on, vol. 9, pp.
    84 -93, mar 1990.
    [4] JIA-HUNG,TANG, "Hierarchical Bayesian Image Reconstruction for Emis-
    sion Tomography Using Dependent Likelihood," Ph.D Dissertation, Institute of
    statistics, NTHU Hsinchu Taiwan, 2012.
    [5] J. Besag, "On the Statistical Analysis of Dirty Pictures," Journal of the
    Royal Statistical Society. Series B (Methodological), vol. 48, pp. pp. 259-302,
    1986.
    [6] J. G. Colsher, "Fully 3-dimensional positron emission tomography," Physics
    in Medicine and Biology, vol. 25, pp. 103-115, 1980.
    [7] M. I. Miller, D. L. Snyder, and S. M. Moore, "An Evaluation of the Use
    of Sieves for Producing Estimates. Of Radioactivity Distributions with the EM
    Algorithm for PET," Nuclear Science, IEEE Transactions on, vol. 33, pp. 492
    -495, feb. 1986.
    [8] K. Lange, "Convergence of EM image reconstruction algorithms with Gibbs
    smoothing," Medical Imaging, IEEE Transactions on, vol. 9, pp. 439 -446, dec
    1990.
    [9] T. Hebert and R. Leahy, "A generalized EM algorithm for 3-D Bayesian
    reconstruction from Poisson data using Gibbs priors," Medical Imaging, IEEE
    Transactions on, vol. 8, pp. 194 -202, jun 1989.
    [10] P. J. Green, "On Use of the EM for Penalized Likelihood Estimation,"
    Journal of the Royal Statistical Society. Series B (Methodological), vol. 52, pp.
    pp. 443-452, 1990.
    [11] B. A. Mair and J. Zahnen, "A generalization of Green's one-step-late
    36
    algorithm for penalized ML reconstruction of PET images," in Nuclear Science
    Symposium Conference Record, 2006. IEEE vol. 5, ed, 2006, pp. 2775 -2777.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE