簡易檢索 / 詳目顯示

研究生: 蔡岳佑
Tsai, Yueh-Yu
論文名稱: 對於多部雙足機器人隨機系統之編隊追蹤:使用分散式強健控制設計方法
Robust Team Formation Tracking for Stochastic Multi-Biped Robot System: A Decentralized Control Approach
指導教授: 陳博現
Chen, Bor-Sen
口試委員: 許健平
Sheu, Jang-Ping
黃志良
Hwang, Chih-Lyang
吳常熙
Wu, Chang-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 40
中文關鍵詞: 分散式追蹤控制強健隨機H無窮控制基於虛擬領導系統的編隊控制多部雙足機器人系統線性矩陣不等式
外文關鍵詞: Decentralized tracking control, Robust stochastic H infinity control, Virtual leader-based team formation control, Multi-biped robot system, Linear matrix inequality (LMI)
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,我們提出了一種分散式強健隨機 H∞ 編隊追蹤控制設計方法,以解決對於多部雙足機器人的編隊追蹤控制問題。首先,基於和機器人足部運動相關的特定 body Jacobian,由雙足機器人任務空間與其軸空間所共同混合而成的正、逆向機器人動力學方程式可以被建構,並將雙足機器人系統化為廣義形式的隨機狀態空間模型。接著,利用 virtual leader 編隊結構以及分散式控制的概念,在編隊控制之下的多部雙足機器人可被視為是分別以隨機 H∞ 強健控制性能追蹤著各自所對應的目標行走路徑。因此,原先對於多部雙足機器人系統的強健隨機 H∞ 編隊追蹤控制設計問題便能轉化為數個相互獨立的 Hamilton-Jacobi inequality (HJI) 約束最佳化問題。為了克服在解算與強健隨機 H∞ 編隊追蹤控制設計相關的 HJI 時所遭遇的困難,我們采用了一種數值化框架來近似各部雙足機器人系統。結果,在 tensor-product (TP) 系統模型轉換技術的幫助之下,我們可以將與強健隨機 H∞ 編隊追蹤控制設計相關的 HJI 約束最佳化問題變換成等價的 linear matrix inequalities (LMIs) 約束最佳化問題,而後者則是能夠使用通常凸最佳化方法來有效的求解。最後,作為控制設計範例,我們給出六部雙足機器人同時沿著一條彎曲路徑進行固定編隊行走的部分模擬結果,以驗證本研究所提出的多部雙足機器人編隊控制設計方法之效用。


    In this study, a decentralized robust stochastic H∞ team formation tracking control design is proposed to deal with the team formation tracking problem for a multi-biped robot system. Based on the specified body Jacobian associated with the leg motions, the hybrid task/joint-space dynamics and the inverse dynamics can be constructed to formulate multiple walking biped robots as generalized stochastic state-space systems. Under the concept of virtual leader-based team formation structure and the decentralized control approach, multiple biped robots walking in team formation are controlled to track their own corresponding paths with the robust stochastic H∞ tracking performances. Consequently, the original robust stochastic H∞ multi-biped robot team formation tracking control design problem can be transformed to several independent Hamilton-Jacobi inequality (HJI)-constrained optimization problems. To cope with the difficulties in solving the HJIs for the robust stochastic H∞ team formation tracking control design, a numerical framework is introduced to approximate the walking biped robot systems. As a result, based on the tensor-product (TP) model transformation technique, the HJI-constrained optimization problems for the robust stochastic H∞ team formation tracking control design are converted into the equivalent linear matrix inequalities (LMIs)-constrained optimization problems, which can be solved efficiently by the convex optimization methods. Finally, in the design example, several simulation results of six biped robots walking along a curved path in the desired rigid formation are given to validate the effectiveness of the proposed control scheme.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 誌謝辭 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 II. Preliminaries and Walking biped robot model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 II-A. Hybrid task/joint-space dynamics of a walking biped robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 II-B. General state-space system model for each walking biped robot dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 III. Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 IV. Tracking control analysis of the decentralized robust stochastic H∞ multi-biped robot team formation tracking problem . . . . . 16 V. Decentralized robust stochastic H∞ multi-biped robot team formation tracking control design via numerical approach . . . . . . . 19 V-A. Numerical framework for the LPV modeling of walking biped robot dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V-B. Decentralized robust stochastic H∞ team formation tracking control design using LMIs-constrained optimization . . . . . . . . 22 VI. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 VII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 附錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    [1] A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics control of powered lower-limb prostheses,” IEEE Trans. Autom. Control, vol. 62, no. 8, pp. 3930–3942, Aug. 2017.
    [2] A. D. Ames, K. Galloway, K. Sreenath and J. W. Grizzle, “Rapidly exponentially stabilizing control lyapunov functions and hybrid zero dynamics,” IEEE Trans. Autom. Control, vol. 59, no. 4, pp. 876–891, Apr. 2014.
    [3] A. E. Martin and R. D. Gregg, “Incorporating human-like walking variability in an HZD-based bipedal model,” IEEE Trans. Robot., vol. 32, no. 4, pp. 943–948, Aug. 2016.
    [4] A. A. Saputra, J. Botzheim, I. A. Sulistijono and N. Kubota, “Biologically inspired control system for 3-D locomotion of a humanoid biped robot,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 46, no. 7, pp. 898–911, Jul. 2016.
    [5] C. Liu, D. Wang and Q. Chen, “Central pattern generator inspired control for adaptive walking of biped robots,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 43, no. 5, pp. 1206–1215, Sep. 2013.
    [6] Y. Huang and Q. Wang, “Torque-stiffness-controlled dynamic walking: analysis of the behaviors of bipeds with both adaptable joint torque and joint stiffness,” IEEE Robot. Autom. Mag., vol. 23, no. 1, pp. 71–82, Mar. 2016.
    [7] T. Geng, “Online regulation of the walking speed of a planar limit cycle walker via model predictive control,” IEEE Trans. Ind. Electron., vol. 61, no. 5, pp. 2326–2333, May. 2014.
    [8] R. C. Luo and C. C. Chen, “Biped walking trajectory generator based on three-mass with angular momentum model using model predictive control,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 268–276, Jan. 2016.
    [9] Z. Yu et al., “Disturbance rejection for biped walking using zero-moment point variation based on body acceleration,” IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2265–2276, Apr. 2019.
    [10] S. Shimmyo, T. Sato and K. Ohnishi, “Biped walking pattern generation by using preview control based on three-mass model,” IEEE Trans. Ind. Electron., vol. 60, no. 11, pp. 5137–5147, Nov. 2013.
    [11] K. K. Oh, M. C. Park and H. S. Ahn, “A survey of multi-agent formation control,” Automatica, vol. 53, pp. 424–440, Mar. 2015.
    [12] C. Wang, H. Tnunay, Z. Zuo, B. Lennox and Z. Ding, “Fixed-time formation control of multirobot systems: design and experiments,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6292–6301, Aug. 2019.
    [13] W. Li, “Notion of control-law module and modular framework of cooperative transportation using multiple nonholonomic robotic agents with physical rigid-formation-motion constraints,” IEEE Trans. Cybern., vol. 46, no. 5, pp. 1242–1248, May. 2016.
    [14] Z. Liu, W. Chen, J. Lu, H. Wang and J. Wang, “Formation control of mobile robots using distributed controller with sampled-data and communication delays,” IEEE Trans. Control Syst. Technol., vol. 24, no. 6, pp. 2125–2132, Nov. 2016.
    [15] Ramon Garcia-Hernandez, Michel Lopez-Franco, Edgar N. Sanchez, Alma y. Alanis, Jose A. Ruz-Hernandez, Decentralized Neural Control: Application to Robotics. Berlin, Germany: Springer-Verlag: Springer, 2017.
    [16] I. Bayezit and B. Fidan, “Distributed cohesive motion control of flight vehicle formations,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5763–5772, Dec. 2013.
    [17] H. Rezaee and F. Abdollahi, “A decentralized cooperative control scheme with obstacle avoidance for a team of mobile robots,” IEEE Trans. Ind. Electron., vol. 61, no. 1, pp. 347–354, Jan. 2014.
    [18] K. Yoshida, H. Fukushima, K. Kon and F. Matsuno, “Control of a group of mobile robots based on formation abstraction and decentralized locational optimization,” IEEE Trans. Robot., vol. 30, no. 3, pp. 550–565, Jun. 2014.
    [19] Y. Liu and R. Bucknall, “A survey of formation control and motion planning of multiple unmanned vehicles,” Robotica, vol. 36, no. 7, pp. 1019–1047, Jul. 2018.
    [20] G. Liu and S. Zhang, “A survey on formation control of small satellites,” Proc. IEEE, vol. 106, no. 3, pp. 440–457, Mar. 2018.
    [21] H. E. Psillakis and A. T. Alexandridis, “Adaptive neural motion control of n-link robot manipulators subject to unknown disturbances and stochastic perturbations,” IEE Proc.-Control Theory Appl., vol. 153, no. 2, pp. 127–138, Mar. 2006.
    [22] M. Cui, X. Xie and Z. Wu, “Dynamics modeling and tracking control of robot manipulators in random vibration environment,” IEEE Trans. Autom. Control, vol. 58, no. 6, pp. 1540–1545, Jun. 2013.
    [23] N. Nagpal, V. Agarwal and B. Bhushan, “A real-time state-observer-based controller for a stochastic robotic manipulator,” IEEE Trans. Ind Appl., vol. 54, no. 2, pp. 1806–1822, Apr. 2018.
    [24] G. Zames, “Feedback and optimal sensitivity: model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Autom. Control, vol. 26, no. 2, pp. 301–320, Apr. 1981.
    [25] W. H. Zhang, L. H. Xie and B. S. Chen, Stochastic H2/H∞ Control: A Nash Game Approach. Boca Raton, FL, USA: CRC Press, 2017.
    [26] B. S. Chen, W. H. Chen and H. L. Wu, “Robust H2/H∞ global linearization filter design for nonlinear stochastic systems,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 7, pp. 1441–1454, Jul. 2009.
    [27] C. F. Wu, B. S. Chen and W. H. Zhang, “Multiobjective investment policy for a nonlinear stochastic financial system: a fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 25, no. 2, pp. 460–474, Apr. 2017.
    [28] B. S. Chen and C. H. Wu, “Robust optimal reference-tracking design method for stochastic synthetic biology systems: T–S fuzzy approach,” IEEE Trans. Fuzzy Syst., vol. 18, no. 6, pp. 1144–1159, Dec. 2010.
    [29] M. J. Kim, Y. Choi and W. K. Chung, “Bringing nonlinear H∞ optimality to robot controllers,” IEEE Trans. Robot., vol. 31, no. 3, pp. 682–698, Jun. 2015.
    [30] M. Grossard, J. Martin and G. F. d. C. Pacheco, “Control-oriented design and robust decentralized control of the CEA dexterous robot hand,” IEEE/ASME Trans. Mechatronics, vol. 20, no. 4, pp. 1809–1821, Aug. 2015.
    [31] F. Zhang, O. Ennasr, E. Litchman and X. Tan, “Autonomous sampling of water columns using gliding robotic fish: algorithms and harmful-algae-sampling experiments,” IEEE Syst. J., vol. 10, no. 3, pp. 1271–1281, Sep. 2016.
    [32] A. Yang, W. Naeem, G. W. Irwin and K. Li, “Stability analysis and implementation of a decentralized formation control strategy for unmanned vehicles,” IEEE Trans. Control Syst. Technol., vol. 22, no. 2, pp. 706–720, Mar. 2014.
    [33] H. Rezaee, F. Abdollahi and H. A. Talebi, “H∞ based motion synchronization in formation flight with delayed communications,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6175–6182, Nov. 2014.
    [34] B. Shahbazi, M. Malekzadeh and H. R. Koofigar, “Robust constrained attitude control of spacecraft formation flying in the presence of disturbances,” IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 5, pp. 2534–2543, Oct. 2017.
    [35] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U. K.: Cambridge Univ. Press, 2004.
    [36] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control. Cambridge, U. K.: Cambridge Univ. Press, 2017.
    [37] F. B. Hanson, Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis and Computation, Philadelphia, PA, USA: SIAM, 2007.
    [38] P. Baranyi, T. Yam and P. V´arlaki, Tensor Product Model Transformation in Polytopic Model-Based Control. Boca Raton, FL, USA: CRC Press, 2013.
    [39] S. Boyd, L. E. Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory. Philadelphia, PA, USA: SIAM, 1994.
    [40] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Hoboken, NJ, USA: Wiley, 2002.
    [41] F. C. Park, B. Kim, C. Jang and J. Hong “Geometric algorithms for robot dynamics: a tutorial review” ASME. Appl. Mech. Rev., vol. 70, no. 1, pp. 010803-1–010803-18, Jan. 2018.
    [42] O. Michel “Cyberbotics Ltd. Webots: professional mobile robot simulation,” International Journal of Advanced Robotic Systems, vol. 1, no. 1, pp. 39–42, Mar. 2004.

    QR CODE