研究生: |
陳映竹 Ying-Chu Chen |
---|---|
論文名稱: |
液態乳酸分子進行凝態電漿聚合的反應機制探討 |
指導教授: |
楊長謀
Arnold C.-M. Yang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 電漿聚合 、聚乳酸 、乳酸 、生物可分解 |
外文關鍵詞: | Plasma polymerization, PLLA, lactic acid, biodegradable |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究首次嘗試利用液態乳酸寡聚物直接在13.56MHz的射頻電漿中進行凝態電漿聚合反應,且證實不論乳酸寡聚物分子量大小或改變電漿功率,皆可以成功製備固態的凝態電漿聚乳酸。在固態膜對於低分子量乳酸寡聚物的可穿透性實驗中,驗證液態乳酸寡聚物分子可溶脹進入表層初形成之固態膜,再藉於表面受電漿直接活化而鍵結上固態膜,最終形成厚度達微米尺度的凝態電漿聚乳酸。聚合過程無需使用溶劑或催化劑,簡化並加速了聚乳酸的製備。利用傅立業紅外線光譜儀及固態核磁共振儀分析化學結構,顯示凝態電漿聚乳酸可有效保留乳酸官能基,同時有交聯及Norrish-type II反應發生,形成以線性聚乳酸為主並具有-CH2-及C=C-C=O的結構。將寡聚物的分子量提高,研究中發現可使交聯密度由10-4 g/cm3降低至10-5 g/cm3,但反應時間也較長,且過高的分子量會造成聚合障礙。而降低電漿功率也可降低對液態寡聚物造成的結構破壞,但同時所需反應時間也較長。此外,水解實驗結果顯示凝態電漿聚乳酸在95℃的去離子水中7天可降解70%,而不易降解的30%為具交聯結構的固態膜。藉凝態電漿聚合法在低於100℃反應溫度時,可得到與傳統直接縮合聚合在近200℃反應時相當的反應速率常數(10-5~10-3 L/sec*mole),顯示本研究提供一嶄新且更有效率的凝態電漿聚乳酸合成方式。
Directly starting from liquid phase L-lactic acid (LLA) or its oligomer, the condensed-phase plasma polymerized poly(L-lactic acid) (PLLA) was for the first time successfully synthesized via in-situ plasma in radio frequency (RF) at 13.56 MHz. The polymerization process is based on the permeability of the initially polymerized crosslinking film to liquid LLA oligomer. As swelling into the film, LLA oligomer bonded on the film surface as a result of direct plasma activation and terminated in macro-scale bulk. The chemical structure was characterized by fourier-transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance (solid state NMR). Based on this multitechnique analysis, it was determined that condensed-phase plasma polymerized PLLA retained original functionalities of LLA; moreover, it contained methylene and enone which were absent from linear PLLA. Those could be explained by crosslink and Norrish-type II reaction. Increasing molecular weight of oligomer reduced the crosslink density from 10-4 g/cm3 to 10-5 g/cm3; however, it not only took longer reaction time, but obstructed reaction with exceed high oligomer. Structure was more regular for treating at low power, when compared at completely solidified phase, and reaction time at 50W took 6 times than at 200W. Besides, 70% of condensed-phase plasma polymerized PLLA hydrolyzed in distilled water at 95℃ in a week, and the other 30% remained through crosslink. This novel one-step, solvent-free and low temperature method had the same reaction constant(10-5~10-3 L/sec*mole) as traditional one at high temperature, thus was an alternative route to the synthesis of bulk PLLA.
[1] Y. Ikada, in Polymers and Biomaterials (Eds: H. Feng, Y. Han, L. Huang), 1991.
[2] H. R. Kricheldorf, Chemosphere 2001, 43, 49.
[3] R. E. Drumright, P. R. Gruber, D. E. Henton, Adv. Mater. 2000, 12, 1841.
[4] J. Lunt, Polym. Degrad. Stab. 1998, 59, 145.
[5] A. E. Lehninger, in Principes of Biochemistry (Eds: S. Anderson, J. Fox), New York Worth Publishers, New York, 1982.
[6] S. Li, M. Vert, in Global Chinese Symposium on Biomaterials and Controlled Release, 1999.
[7] G. Perego, J. Appl. Polym. Sci. 1996, 59, 37.
[8] M. Ajioka, Bull. Chem. Soc. Jpn. 1995, 68, 2125.
[9] D. Cam, Polymer 1997, 38, 1879.
[10] S. I. Moon, C. W. Lee, I. Taniguchi, M. Miyamoto, Y. Kimura, Polymer 2001, 42, 5059.
[11] Y. Zhao, Z. Wang, J. Wang, H. Mai, B. Yan, F. Yang, J. Appl. Polym. Sci. 2004, 91, 2143.
[12] N.Narayanan, P. K. Roychoudhury, A. Srivastava, Electron. J. Biotechn. 2004, 7, 167.
[13] H. A. Recum, R. L. Cleek, S. G. Eskin, A. G. Mikos, Biomaterials 1995, 16, 441.
[14] H. Tsuji, Y. Ikada, Polym. Degrad. Stab. 2000, 67, 179.
[15] H. Tsuji, K. Nakahara, K. Ikarashi, Macromol. Mater. Eng. 2001, 286, 398.
[16] H. Abe, N. Takahashi, K. J. Kim, M. Mochizuki, Y. Dio, Biomacromolecules 2004, 5, 1606.
[17] J. W. Leenslag, A. J. Penning, Biomaterials 1987, 8, 311.
[18] H. Tsuji, Polymer 2002, 43, 1789.
[19] H. Yasuda, in Plasma Polymerization, Academic Press, Orlando, FL. 1985.
[20] H. Biederman, Y. Osada, in Plasma Polymerization Processes, Elsevier, 1992.
[21] F. F. Shi, Surf. Coat. Technol. 1996, 82, 1.
[22] T. Hirotsu, K. Nakayama, T. Tsujisaka, A. Mas, F. Schue, Polym. Eng. Sci. 2002, 42, 299.
[23] 張懿心, 國立清華大學材料科學工程研究所碩士論文,利用電漿聚合法製備可分解性聚乳酸之製程及特性研究, 2004.
[24] K. Jamshidi, S. H. Hyon, Y. Ikada, Polymer 1998, 29, 2229.
[25] 呂□綜, 國立中央大學機械工程研究所碩士論文,組織工程用精密支架之製造, 2002.
[26] M. Vert, S. Li, H. Garreau, J. Controlled Release 1991, 16, 15.
[27] K. R. Huffman, D. J. Casey, J. Polym. Sci.: Polym. Chem. Ed. 1985, 23, 1939.
[28] C. G. Pitt, Biomaterials 1981, 2, 215.
[29] A. N. Vaidya, R. A. Pandey, S. Mudliar, M. S. Kumar, T. Chakrabarti, S. Devotta, Crit. Rev. Env. Sci. Tec. 2005, 35(5), 429.
[30] J. H. Hollahan, A. T. Bell, in Techniques and Applications of Plasma Chemistry, Wiley, New York, 1974.
[31] B. N. Chapman, in Glow Discharge Processes, John Wiley & Sons, 1980.
[32] S. Motria, in Plasma Deposition, Treatment, and Etching of Polymers (Ed: R. d’Agostino), Academic Press, London, 1990.
[33] A. Grill, in Cold Plasma in Material Fabrication, IEEE, New York, 1994.
[34] F. F. Shi, Surf. Coat. Technol. 1996, 82, 1.
[35] H. Yasuda, Nucl. Instrum. Meth. A 2003, 515, 15.
[36] H. Yasuda, in Luminous Chemical Vapor Deposition and Interface Engineering, Marcel Dekker, New York, 2005.
[37] D. B. Haddow, R. M. France, R. D. Short, J. W. Bradley, D. Barton, Langmuir 2000, 16, 5654.
[38] Q. Yu, C. E. Moffitt, D. M. Wieliczka, H. Yasuda, J. Vac. Sci. Technol. A 2001, 19, 2163.
[39] J. F. Friedrich, I. Retzko, G. Kuhn, W. E. S. Unger, A. Lippitz, Surf. Coat. Thchnol. 2001, 142, 460.
[40] H. Nagai, Y. Nakata, M. Suzuki, T. Okutani, J. Mater. Sci. 1998, 33, 1897.
[41] M. S. Silverstein, I. V. Fisher, Polymer 2002, 43, 11.
[42] S. Eufinger, W. J. Van Ooij, T. H. Ridgway, J. Appl. Poly. Sci. 1996, 61, 1503.
[43] S. Schiller, Chem. Mater. 2002, 14, 235.
[44] C. Tarducci, W. C. E. Schofield, J. P. S. Badyal, S. A. Brewer, C. Willis, Macromolecules 2002, 35, 8724.
[45] M. Sugawara, S. Honda, in Plasma Etching, Oxford University Press, New York, 1998.
[46] M. A. Lieberman, A. J. Lichtenberg, in Principles of Plasma Discharges and Materials Processing, Wiley-Interscience, New York, 1994.
[47] H. Biederman, in Plasma polymer films, Imperial College Press, London, 2004.
[48] D. L. Flamm, in Plasma-Surface Interactions and Processing of Materials (Ed: O. Auciello), Kluwer Academic Publishers, Boston, 1990.
[49] D. T. Vu, A. K. Kolah, N. S. Asthana, L. Peereboom, C. T. Lira, D. J. Miller, Fluid Phase Equilibria 2005, 236, 125.
[50] B. George, P. Mclntyre, in Infrared Spectroscopy, John Wiley & Sons, New York, 1987.
[51]. 汪健民主編, 材料分析, 中國材料科學學會出版, 1998.
[52] 儀器總覽6-表面分析儀器, 行政院國家科學委員會精密儀器發展中心出版, 1998.
[53] D. Briggs, M. P. Seah, in Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, 1994.
[54] F. K. Ghosh, “Introduction to Photoelectron Spectroscopy”, John Wiley & Sons, New York, 1983.
[55] H. Windawi, F. F. L. Ho, in Applied Electron Spectroscopy for Chemical Analysis, John Wiley & Sons, New York, 1986.
[56] S. Carraher, 高分子化學, 薛敬和主譯, 高立圖書有限公司, 2000.
[57] 陳力俊, 材料電子顯微鏡學, 中國材料科學學會, 1994.
[58] G. Hersberg, in Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules”, van Nostrand Reihold Company Inc., New York, 1966.
[59] J. Cavanagh, W. J. Fairbrother, A. G. Palmer, N. J. Skelton, in Protein NMR Spectroscopy :Principles and Practice, Academic, 1996.
[60] A. Abragam, in Principle of Nuclear Magnetism, Oxford. University Press, London, 1961.
[61] G. Li, J. A. Tobin, D. D. Denton, Appl. Phys.Lett. 1993, 62, 1582.
[62] L.Guzman, R. Celva, A. Miotello, E. Voltolini, F. Ferrari, M. Adami, Surf. Coat. Technol. 1998, 103-104, 375.
[63] A. Chapiro, Nucl. Instrum. Meth. B 1995, 105, 5.
[64] S. C. J. Loo, H. T. Tan, C. P. Ooi, Y. C. F. Boey, Acta Biomaterialia 2006, 2, 287.
[65] F. D. Kopinke, M. Remmler, K. Mackenzie, M. Moder, O. Wachsen, Polym. Degrad. Stab. 1996, 53, 329.
[66] H. Tsuji, Y. Echizen, S. K. Saha, Y. Nishimura, Macromol. Mater. Eng. 2005, 290, 1192.
[67] M. R. Wertheimer, A. C. Fozza, A. Hollander, Nucl. Instr. And Meth. in Phys. Res. B 1999, 151, 65.
[68]T. Kai, W. Ueno, T. Yamaguchi, S. I. Nakao, J.Polym. Sci., Part A: Polym. Chem. 2005, 43, 2068.
[69] H. Mitomo, A. Kaneda, T. M. Quynh, N. Nagasawa, F. Yoshii, Polymer 2005, 46, 4695.
[70] A. Babanalbandi, D. J. T. Hill, J. H. O’Donnell, P. J. Pomery, A. Whittaker, Polym. Degrad. Stab. 1995, 50, 297.
[71] P. Nugroho, H. Mitomo, F.Yoshii, T. Kume, Polym. Degrad. Stab. 2001, 72, 337.
[72] A. Babanalbandi, D. J. T. Hill, A. K. Whittaker, Polym. Degrad. Stab. 1997, 58, 203.
[73] N. Morosoff, in Plasma Deposition, Treatment, and Etching of Polymers (Ed: R. d’Agostino), Academic Press, London, 1990.