研究生: |
侯宗昆 Hou,Tzon-Kun |
---|---|
論文名稱: |
物理式海水淡化 Physical Desalination |
指導教授: |
施宙聰
Shy, Jow-Tsong 洪在明 Hong, Tzay-Ming |
口試委員: |
劉紹臣
Liu, Shaw Chen 廖述良 Liaw, Shu-Liang 林俊源 Lin , Jiunn-Yuan 林登松 Lin, Dengsung |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 海水淡化 、溫室效應 |
外文關鍵詞: | Desalination, Greenhouse |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前主流海水淡化技術有逆滲透法與多級閃化蒸餾法,這兩大主流有耗材與能源成本的負擔。他們的過濾或蒸餾的過程,阻礙流量、增加材料與能源的耗損。不容易大量低成本生產製造。
我們的物理式海水淡化,不過濾或阻斷水流,只改變 離子的分佈,故而 可以做出沒有耗材問題、低耗能與容易大流量製造的高價值海水淡化技術。
藉由電場可以穿透介電材料 的特性,我們使用介電材料將電極與海水隔絕,但電場依然可以穿透介電材料來移動離子、改變離子的分佈。如此可以不使用DC直流電流即可來移動離子,避免耗材污染、阻塞,達到低耗材、高流量的目的。只需在電場規範的低離子濃度小區域操作引取淡水,達到低耗能、低耗材的目的。
我們嘗試使用三種方法進行物理式海水淡化:DC、ACDC 與高頻不對稱偏壓方法。DC方法將家用電110V 變壓成10-30KV AC高壓後,再整流成直流偏壓輸入。ACDC方法,將10V,300KHz訊號產生器訊號,經過741OP放大器、Push- Pull電晶體對,以放大電流,再經鐵粉心變壓器放大電壓,半波整流,達到將2KV高壓電以26KHz共震頻率形態或加整流後以脈衝方式輸入。前兩種低頻方法,由於 淡化槽電容低,高電容性阻抗的關係,淡化影響只在淡化槽電極附近。第三種高頻不對稱偏壓方法,使用 任意波形產生器,設計15-5 MHz不對稱電壓、空氣蕊心變壓器、半波整流器,形成 不對稱 直流偏壓與交流共振電壓,以移動淡化槽電極表面與鹽液內部離子。以上三種方法的效應可歸納為吸引模式與排斥模式。
目前在單程20公分長的實驗淡化槽的淡化率為0.4%。藉由單程淡化率再提高與多程式製程,我們將可製造出可與現有淡化技術競爭的物理式海水淡化製程。藉由沒有耗材負擔、低耗能與高流量的優勢,將可贡獻於 協助 旱地復耕、沙漠復耕等農業運用,協助減緩地球暖化。
在運用方面,物理式海水淡化提供水源與可見光反光片相結合,運用於農業的旱地復耕、沙漠復耕。例如用回收鋁箔披護上熔融的回收透明寶特瓶材料,以避免鋁箔氧化,此鋁箔反光片可以協助為地面降溫、為土壤保溼。以 50%遮光率,復耕面積達到0.17倍的地表面積時,地表溫度可以降低 0.6 0C,回復工業革命前地表平衡溫度。並且復耕植物每年吸收、固化的二氧化碳,是人為製造的二氧化碳的兩倍。這是 目前最安全、最低成本的地球工程方法,以協助為地球降溫。
關鍵字: 海水淡化、溫室效應
ABSTRACT
Physical Desalination
Hou Tzon-Kun, Advisors:Prof. Shy Jow-Tsong, Hong Tzay-Ming
Doctor of Philosophy in Physics
National Tsing Hua University, Hsin-Chu City, Taiwan
Current main desalination technologies include Reverse Osmosis and Multi Stage Flash Distillation. Both are operated by filtering or heating sea water under consumable materials and power loss. They suffer the weakness of blocking or stopping the main flow which leads to operation speed reduction, parts contamination and energy loading.
Our method, Physical Desalination, avoids blocking or stopping the main flow of sea water, and redistributes ions distribution and extracts purified water in low ions zone which enables the changes to get higher operation throughput and less parts contamination and low energy loading. We use electric field protected by dielectric film on electro plates to replace DC current which always causes filter contamination and consumable loss. Our electric filed can penetrate the dielectric film, move ions and change ions distribution. Without DC current related contamination we can avoid consumables loss and high throughput. By operating only in small area confined by the designed electric field we provide low operation energy and low consumables desalination_ high value desalination technologies.
Three approaches are utilized to remove ions from sea water: DC, ACDC and high frequency asymmetry AC. In the DC and ACDC approaches, desalination effects are limited to zones near electric plates from the high capacitor impedance in the interior region of desalination cell. For the high frequency AC approach, 15-5 Mega Hz asymmetry voltages were applied, to overcome the high capacitor impedance of desalination cell. This high frequency asymmetry voltage move inner ions in cell to the regulated high voltage edge plates and change ions distribution for purification. All these three approaches can be classified into ions attraction mode and rejection mode.
So far we manage to achieve a desalinate rate in the range of 0.4 %, under single pass in 20cm process unit length. With higher rate improvement and combined by multi-stages operation, we are able to approach commercial desalination effects with particularly no consumable filter loss issues, low energy and high throughput operation.
In the application to agriculture, combined with visible light reflection white plate, such as recycle alumina foils, we can preserve the rehabilitation moisture in soil. As rehabilitation area gradually extends to 0.17 times of the area of our Earth surface, the reflection energy by visible light will reduce the Earth balance surface temperature by 0.6 oC to the temperature level before Industrial Revolution. At the same time the plants on the rehabilitation area can annually absorb CO2 to two times of human annual CO2 emission. We project the cost can be easily and automatically covered by the landlords in their necessary rehabilitation activities. These approaches therefore provide the safest and cheapest Earth engineering.
Key Words: Desalination、Greenhouse
1. Igor Shiklomanov, Water in crisis: a guide to the
world fresh water resource, P.13, Oxford University
Press, New York, 1993.
2. Val S. Frenkel, D.Wre, Desalination, trends and
technologies, P.73, InTech, 2011.
3. James E. Miller, Review of water resources and
desalination technologies, P.7, Sand Report SAND 2003-
0800, Sandia National Laboratories, Albuquerque, NM,
USA, 2003.
4. S.L. Postel, G.C. Daily, P.R. Ehrlich, Human
appropriation of renewable fresh
water, Science 271, 786 (1996).
5. Christion Huler, Ingo Klimant, Christian Krause, Optical
seawater salinity, J. Anal Chem. 368, 196 (2000).
6. Mark Elliott, Andrew Armstrong, Joseph Lobuglio and
Jamie Bartram, Technologies for climate change adaption -
the water sector, P.19, UNEP, Denmark, 2011.
7. Tamim Younos, The economics of desalination , Journal of
Contemporary Water Research & Education, 131, 42 (2005).
8. James E. Miller, Review of water resources and
desalination technologies, P.25, Sand Report SAND 2003-
0800, Sandia National Laboratories, Albuquerque, NM,
USA, 2003.
9. Ulrich Ebensperger and Phyllis, Review of the current
state of desalination,
Water Policy Working Paper 2005-008, P.13, Isley, 2005.
10. K.S. Spiegler, Principles of energetics, P.32, Springer- Verlag,Heidelberg,1983.
11. K.S.Spiegler, YM.El-Sayed, The energetics of
desalination process,
Desalination 134, 109 (2001).
12. 張淵斯、曹知行,海水淡化的發展,科學發展, 438, 32-39 (民
98)。
13. Lauren F. Greenleea, Desmond F. Lawlerb, Benny D.
Freemana, Benoit
Marrotc,Philippe Moulinc, Reverse osmosis desalination:
Water sources,
technology, and today’s challenges, Water Research 43,
2333 (2009).
14. Hermann W. Pohland, Seawater desalination by reverse
osmosis, Endesvaur,P.142, New Serial Volume 4, No. 4,
Pergamon Press, Great Britain, l980.
15. F Macedonio, E Drioli, Membrane systems for seawater
and brackish water
desalination, P.250, Elsevier B.V. , 2010.
16. S. Prabhakar, R.N. Patra, B.M. Misra and M.P.S. Ramani,
Membrane systems for seawater and brackish water
desalination, Desalination, 65, 369 (1987).
17. Panagiotis Tsiakis, Lazaros G. Papageorgiou, Optimal
design of an electrodialysis brackish water
desalination plant, Desalination 173, 176 (2005).
18. Mohtada Sadrzadeh, Toraj Mohammadi, Sea water
desalination using electrodialysis, Desalination 221,
441 (2008).
19. Zakia Amof, Bernard Barioub, Nabil Mameri, Mohamed
Taky, Stephan Nicolasb, Azzedine Elmidaoui, Fluoride
removal from brackish water by electrodialysis,
Desalination 133, 218 (2001).
20. Laura J. Banasiak, Thomas W. Kruttschnitt, Andrea I.
Schäfer, Desalination using electrodialysis as a
function of voltage and salt concentration,
Desalination 205, 40 (2007).
21. B. Van der Bruggen, C. Vandecasteele , Distillation vs.
membrane filtration:
overview of process, evolutions in seawater
desalination, Desalination 143, 211 (2002).
22. M. Bleha, G. Tishchenk, V. Sumberova, V. Kudela,
Characteristic of the critical state of membranes in ED-
desalination of milk whey, Desalination, 86, 177 (1992).
23. R. Saidura, E.T. Elcevvadi, S. Mekhilef, A. Safari,
H.A. Mohammed, An overview of different distillation
methods for small scale applications, Renewable and
Sustainable Energy Reviews 15, 4760 (2011).
24. M. Al-Sahali, H. Ettouney, Developments in thermal
desalination process: Design, energy, and costing
aspects, Desalination 214, 227 (2007).
25. Akili D. Khawaji, Ibrahim K. Kutubkhanah, Jong-Mihn
Wie, Advances in seawater desalination technologies,
Desalination 221, 57 (2008).
26. Ali A. Tofigh and Ghasem D. Najafpour, Technical and
economical evaluation of desalination processes for
potable water from seawater, Middle-East Journal of
Scientific Research 12, 44 (2012).
28. K.S. Spiegler, Principles of energetics, P.45, Springer-
Verlag,Heidelberg,1983.
29. H. T. EL-Dessouky, H. M. Ettouney and F. Al-Juwayhel,
Multiple effect evaporation vaporation compression
desalination process, Trans J Chem E, Vol 78, Part A,
May 2000.
30. A.S. Nafey, H.E.S. Fath, A.A. Mabrouk, Thermoeconomic
design of a multi-effect evaporation mechanical vapor
compression(MEE–MVC) desalination process,
Desalination 230, 3 (2008).
31. M. Al-Shammiri,M.Safar, Multi-effect distillation
plants: State of the art, Desalination 126, 47
(1999).
32. Hisham El-Dessouky, Imad Alatiqi, S. Bingulac and
Hisham Ettouney, Steady-state analysis of the multiple
effect evaporation desalination process, Chem. Eng.
Technol. 21, 5 (1998).
33. Neil M. Wade, Technical and economic evaluation of
distillation and reverse osmosis desalination
processes, Desalination, 93, 357 (1993).
34. Roberto Borsani, Silvio Rebagliati, Fundamentals and
costing of MSF
desalination plants and comparison with other
technologies, Desalination 182, 36 (2005).
35. Gemma Raluy, Luis Serra, Javier Uche, Life cycle
assessment of MSF, MED
and RO desalination technologies, Energy 31, 2363
(2006).
36. Bart Van der Bruggen, Desalination by distillation and
by reverse osmosis –
trends towards the future, Membrane Technology,
February 6 (2003).
37. Sung Jae Kim,Sung Hee Ko,Kwan Hyoung Kang & Jongyoon
Han, Nature Nanotechnology 5, 297 (2010).
38. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment
and ion- depletion effect of nanochannel structure.
Nano Lett. 4, 1099 (2004).
39. K.S. Spiegler, Principles of desalination, P.424,
Academic Press, New York,1966.
40. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin,
State-of-the-art of reverse osmosis desalination,
Desalination 216, 1 (2007).
41. Menachem Elimelech and William A. Phillip, The future
of seawater desalination: Energy, technology, and the
environment, Science 333, 712 (2011).
42. Anurag P. Mairal, Alan R. Greenberg, William B. Krantz,
Leonard J. Bond, Real-time measurement of inorganic
fouling of RO desalination membranes using ultrasonic
time-domain reflectometry, Journal of Membrane Science
159, 185 (1999).
43. A.M.K. El-Ghonemy, Renewable and sustainable energy
reviews 16, 6587 (2012).
44. Joseph M. Steigerwald, Shyam P. Murarka, Ronald J.
Gutmann, Chemical mechanical planarization of
microelectronic materials, P.199, John Wiley & Sons,
NJ, 1997.
45. David J. Griffiths, Introduction to electrodynamics,
P.154,Prentice-Hall International, Inc(1999).
46. J. D.Jackson, Classical electrodynamics, P.77, John
Wiley & Sons, NJ,1998.
47. Muhammad H. Rashid著, 電子學 Microelectronic Circuits ,
P.586, 陳龍英、陸亭州編譯 , 高立圖書(2011).
48. Edward A.G. Schuur, Benjamin Abbott, High risk of
permafrost thaw, Nature, 480, 32 (2011).
49. J. T. Kiehl and Kevin E. Trenberth, Earth’s annual
global mean energy budget, Bulletin of the American
Meteorological Society, 78, 206 (1997).
50. J. D. Jackson, Classical electrodynamics, P.315, John
Wiley & Sons, NJ, 1998.