研究生: |
楊立柏 Li-Bo Yang |
---|---|
論文名稱: |
雙核鐵亞硝基化合物之合成與反應性:腈水解酶及雙亞硝基鐵化合物之模型研究 Synthesis and Reactivity of Dinuclear Iron Nitrosyl Complexes : Model Study of Nitrile Hydratase and DNICs |
指導教授: |
廖文峯
Wen-Feng Liaw |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 腈水解酶 、雙亞硝基鐵化合物 、雙核鐵亞硝基化合物 、一氧化氮 |
外文關鍵詞: | Nitrile Hydratase, DNICs, Dinuclear Iron Nitrosyl Complexes, nitric oxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
以Fe(CO)2(NO)2為起始物,加入8,8′-diquinolyl disulfide在THF溶劑下反應可得到一個雙三角錐結構、單亞硝基含鐵的化合物[Fe(qt)2(NO)] (1)。化合物1的νNO = 1681 cm-1 (KBr),Fe-N(NO)鍵長1.685 Å,N-O鍵長1.18 Å,Fe-N-O角度為157.8度。從NMR (paramagnetic shift)、EPR (S = 1/2)、SQUID (□eff = 1.63 □B)等光譜及實驗反應性得知,化合物1為順磁性分子且鐵和一氧化氮的電子組態依照Feltham-Enemark notation,可視為{FeII(NO•)}7。
化合物1在THF溶劑下和[NO][BF4]反應可得到一個EPR silent的雙核鐵亞硝基化合物[(ON)Fe(qt)2Fe(NO)2][BF4] (2)。化合物2由雙三角錐的[(NO)Fe(1)N2S2]和四面體的[S2Fe(2)(NO)2]架構而成,Fe(1)-Fe(2)鍵長2.661 Å,平均Fe-N(NO)鍵長1.660 Å,平均N-O鍵長1.155 Å。
同樣以Fe(CO)2(NO)2為起始物,加入(PyPepS)2,[(PyPepS)2 = N-2-mercapto- phenyl-2′-pyridinecarboxamide disulfide]在THF溶劑反應,則得到一個典型的Roussin′s Red Ester化合物:(NO)4Fe2(□-SPyPep)2 (7)。化合物7加入氧氣之後,反應生成另一個EPR silent的雙核鐵亞硝基化合物(NO)2Fe2(PyPepS)2 (3)。化合物3由二個扭曲的四面型角錐架構而成,Fe-Fe鍵長2.625 Å,平均Fe-Ncarboxamide鍵長1.949 Å,平均Fe-S鍵長2.243 Å,每個鐵上鍵結了一個NO分子,且有一個carboxamido的氮、一個pyridine的氮和二個thiolato的硫作為配位。我們希望藉由合成此類腈水解酶的模型化合物,來更了解此酵素,不僅是在結構、配位環境、光譜甚至是反應性上的資訊。
Abstract
Reaction of Fe(CO)2(NO)2 and 8,8′-diquinolyl disulfide in THF afforded the trigonal bipyramidal, mononitrosyl iron complex [Fe(qt)2(NO)] (1) with NO occupying the equatorial position. For 1, a νNO stretching frequency of 1681 cm-1 (KBr) is observed. X-ray data reveals that Fe-N(NO) and N-O bond distances are 1.685 Å and 1.18 Å, respectively. Also, complex 1 contains a notably bent Fe-N-O bond, 157.8°.□□1H NMR (paramagnetic shift), EPR (S = 1/2), magnetic moment data (□eff = 1.63 □B) and the chemical reactivity of complex 1 agree with a electronic configuration of {FeII(NO•)}7 according to the Feltham-Enemark notation.
Reaction of [Fe(qt)2(NO)] (1) and [NO][BF4] in THF afforded a EPR-silent, homodinuclear iron thiolate nitrosyl complex [(ON)Fe(1)(qt)2Fe(2)(NO)2][BF4] (2). The geometry of Fe(1) of complex 2 is trigonal bipyramidal [(ON)FeN2S2] core with a NO ligand occupying the equatorial position and the Fe(2) center has a regular tetra- hedral [S2Fe(NO)2] coordination environment. The Fe(1)-Fe(2) distance of 2.661 Å implicate the existence of Fe-Fe interaction. The average Fe-N(NO) and N-O bond distances of complex 2 are 1.660 Å and 1.155 Å , respectively.
Complex (NO)4Fe2(□-SPyPep)2 (7) was afforded by reaction of Fe(CO)2(NO)2 and (PyPepS)2 [(PyPepS)2 = N-2-mercapto-phenyl-2′-pyridinecarboxamide disulfide] in THF. Complex 7 was oxidized by O2 to yield the EPR-silent, homodinuclear iron thiolate nitrosyl complex (NO)2Fe2(PyPepS)2 (3). Complex 3 consists of two distorted square pyramidal structure with a Fe(1)-Fe(2) bond distance of 2.625 Å. The average Fe-Ncarboxamide and Fe-S bond distances of complex 3 are 1.949 Å and 2.243 Å, respectively. Each iron center of complex 3 is ligated by one carboxamido N, one pyridinyl N, two bridged thiolato S and a NO molecule. This unique coordination environment of 3 may provide important clues (structure, spectroscopy, reactivity, etc.) relating to the nitrile hydratase.
參考文獻(References)
(1) Ibers, J. A.; Holm, R. H. Science 1980, 209, 223.
(2) McCleverty, J. A. Chem. Rev. 2004, 104, 403.
(3) http://nobelprize.org/medicine/laureates/1998/index.html
(4) Culotta, E.; Koshland Jr., D. E. Science 1992, 258, 1862.
(5) Richter-Addo, G. B.; Legzdins, P.; Burstyn, J. Chem. Rev. 2002, 102, 857.
(6) Stamler, J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898.
(7) Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339.
(8) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, 2nd ed., Prentice Hall, New Jersey, 1999, p. 443.
(9) Lippard, S. J.; Berg, J. M. Principles of Bioinorganic Chemistry, University Science Books, California, 1994, p. 91.
(10) Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.
(11) (a) Pryor, W. A.; Lightsey, J. W. Science 1981, 214, 435. (b) Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 1620.
(12) (a) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091. (b) Williams, D. L. H. Acc. Chem. Res. 1999, 32, 869.
(13) (a) Butler, A. R.; Megson, I. L. Chem. Rev. 2002, 102, 1155. (b) Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63, 485.
(14) Feig, A. L.; Bautista, M. T.; Lippard, S. J. Inorg. Chem. 1996, 35, 6892.
(15) (a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Osterloh, F.; Saak, W.; Haase. D.; Pohl, S. Chem. Commun. 1997, 979. (c) Liaw, W.-F.; Chiang, C.-Y.; Lee, G.-H.; Peng, S.-M.; Lai, C.-H.; Darensbourg, M. Y. Inorg. Chem. 2000, 39, 480. (d) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (e) Chiang, C.-Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (f) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (g) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872.
(16) (a) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217. (b) Wang, X.; Sundberg, E. B.; Li, L.; Kantardjieff, K. A.; Herron, S. R.; Lim, M.; Ford, P. C. Chem. Commun. 2005, 477. (c) Hung, M.-C.; Tsai, M.-C.; Liaw, W.-F. Inorg. Chem. 2006, ASAP article.
(17) (a) Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C.-N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta 1990, 168, 105.
(18) Chen, H.-W.; Lin, C.-W.; Chen, C.-C.; Yang, L.-B.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 3226 and references therein.
(19) Wiegant, F. A. C.; Malyshev, I. Y.; Kleschyov, A. L.; Faassen, E. V.; Vanin, A. F. FEBS Letters 1999, 455, 179.
(20) Severina, I. S.; Bussygina, O. G.; Pyatakova, N. V.; Malenkova, I. V.; Vanin, A. F. Nitric Oxide 2003, 8, 155.
(21) Kobayashi, M.; Nagasawa, T.; Yamada, H. Trends Biotechnol. 1992, 10, 402.
(22) Endo, I.; Nojiri, M.; Tsujimura, M.; Nakasako, M.; Nagashima, S.; Yohda, M.; Odaka, M. J. Inorg. Biochem. 2001, 83, 247.
(23) Huang, W.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.; Lindqvist, Y. Structure 1997, 5, 691.
(24) Doan, P. E.; Nelson, M. J.; Jin, H.; Hoffman, B. M. J. Am. Chem. Soc. 1996, 118, 7014.
(25) Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Nature Struct. Biol. 1998, 5, 347.
(26) Kovacs, J. A. Chem. Rev. 2004, 104, 825.
(27) Endo, I.; Odaka, M.; Yohda, M. Trends Biotechnol. 1999, 17, 244.
(28) Nagamune, T.; Kurata, H.; Hirata, M.; Honda, J.; Hirata, A.; Endo, I. Photochem. Photobiol. 1990, 51, 87.
(29) Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 201.
(30) Brennan, B. A.; Cummings, J. G.; Chase, D. B.; Turner Jr., I. M.; Nelson, M. J. Biochemistry 1996, 35, 10068.
(31) Kennepohl, P.; Neese, F.; Schweitzer, D.; Jackson, H. L.; Kovacs, J. A.; Solomon, E. I. Inorg. Chem. 2005, 44, 1826.
(32) (a) Feig, A. L.; Lippard, S. J. Chem. Rev. 1994, 94, 759. (b) Que Jr., L.; Ho, R. Y. N. Chem. Rev. 1996, 96, 2607.
(33) Nagasawa, T.; Ryuno, K.; Yamada, H. Biochem. Biophys. Res. Commun. 1986, 139, 1305.
(34) Murakami, T.; Nojiri, M.; Nakayama, H.; Odaka, M.; Yohda, M.; Dohmae, N.; Takio, K.; Nagamune, T.; Endo, I. Protein Sci. 2000, 9, 1024.
(35) Lippard, S. J. Angew. Chem. Int. Ed. Engl. 1988, 27, 344.
(36) (a) Fallon, G. D.; Gatehouse, B. M. J. Chem. Soc., Dalton Trans. 1975, 1344. (b) Shoner, S. C.; Barnhart, D.; Kovacs, J. A. Inorg. Chem. 1995, 34, 4517. (c) Nivorozhkin, A. L.; Uraev, A. I.; Bondarenko, G. I.; Antsyshkina, A. S.; Kurbatov, V. P.; Garnovskii, A. D.; Turta, C. I.; Brashoveanu, N. D. Chem. Commun. 1997, 1711. (d) Noveron, J. C.; Herradora, R.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chim. Acta 1999, 285, 269. (e) Beissel, T.; Bürger, K. S.; Voigt, G.; Wieghardt, K.; Butzlaff, C.; Trautwein, A. X. Inorg. Chem. 1993, 32, 124.
(37) Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785.
(38) (a) Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1998, 37, 1138. (b) Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1999, 38, 616.
(39) (a) Ellison, J. J.; Nienstedt, A.; Shoner, S. C.; Barnhart, D.; Cowen, J. A.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 5691. (b) Schweitzer, D.; Ellison, J. J.; Shoner, S.C.; Lovell, S.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 10996. (c) Grapperhaus, C. A.; Patra, A. K.; Mashuta, M. S. Inorg. Chem. 2002, 41, 1039.
(40) (a) Artaud, I.; Chatel, S.; Chauvin, A. S.; Bonnet, D.; Kopf, M. A.; Leduc, P. Coord. Chem. Rev. 1999, 190-192, 577. (b) Heinrich, L.; Li, Y.; Vaissermann, J.; Chottard, G.; Chottard, J.-C. Angew. Chem., Int. Ed. 1999, 38, 3526. (c) Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 2001, 123, 3247.
(41) Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492.
(42) (a) Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1999, 121, 3553. (b) Heinrich, L.; Mary-Verla, A.; Li, Y.; Vaissermann, J.; Chottard, J.-C. Eur. J. Inorg. Chem. 2001, 2203.
(43) Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 2000, 39, 357.
(44) McBride, D. W.; Stafford, S. L.; Stone, F. G. A. Inorg. Chem. 1962, 1, 386.
(45) (a) Iliev, V. I.; Shopov, D. Polyhedron 1987, 6, 1497. (b) Yordanov, N. D.; Iliev, V.; Shopov, D.; Jezierski, A.; Jeżowska-Trzebiatowska, B. Inorg. Chim. Acta 1982, 60, 9.
(46) (a) Haller, K. J.; Johnson, P. L.; Feltham, R. D.; Enemark, J. H.; Ferraro, J. R.; Basile, L. J. Inorg. Chim. Acta 1979, 33, 119. (b) Wells, F. V.; McCann, S. W.; Wickman, H. H.; Kessel, S. L.; Hendrickson, D. N.; Feltham, R. D. Inorg. Chem. 1982, 21, 2306. (c) Scheidt, W. R.; Frisse, M. E. J. Am. Chem. Soc. 1975, 97, 17. (d) Lee, C.-M.; Chen, C.-H.; Chen, H.-W.; Hsu, J.-L.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 6670. (e) Feltham, R. D.; Crain, H. Inorg. Chim. Acta 1980, 40, 37. (f) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan. J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (g) Karlin, K. D.; Rabinowitz, H. N.; Lewis, D. L.; Lippard, S. J. Inorg. Chem. 1977, 16, 3262. (h) Chiang, C.-Y.; Lee, J.; Dalrymple, C.; Sarahan, M. C.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 2005, 44, 9007.
(47) (a) Ray, M.; Golombek, A. P.; Hendrich, M. P.; Yap, G. P. A.; Liable-Sands, L. M.; Rheingold, A. L.; Borovik, A. S. Inorg. Chem. 1999, 38, 3110. (b) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473.
(48) Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M. Organometallics 1998, 17, 2370.