研究生: |
劉政育 Liu, Cheng-Yu |
---|---|
論文名稱: |
無扭結環形重組蛋白YbeA形成區域交換之摺疊路徑探討 Insights into the folding pathway of an unknotted and domain-swapped circular permutant of YbeA |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
徐尚德
Hsu, Shang-Te Danny 蘇士哲 Sue, Shih-Che |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 82 |
中文關鍵詞: | 扭結蛋白 、區域交換 、環形重組 、摺疊路徑 |
外文關鍵詞: | YbeA, knotted, domain-swapping, circular, permutant, CP74 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自然界存在著一種結構特殊的蛋白,他們在蛋白質結構中存在著”扭結” 的構造而被稱為扭結蛋白。扭結所存在的功能以及為什麼摺疊成為這種特別形狀的原因,一直被科學家所探討,在先前研究扭結蛋白YbeA,透過環形重組技術(CP74)解除了扭結蛋白YbeA的扭結。出乎意料的是,YbeA CP74形成了區域交換的二聚體。為了進一步研究如何形成區域交換的二聚體,我們將五個色胺酸分別突變為苯丙胺酸 (W7F、W19F、W48F、W72F和W100F)以通過圓二色光譜內生性螢光以及核磁共振(NMR)探測局部和全局折疊過程。從色胺酸突變到苯丙胺酸(WtoF)的突變體在小角度X射線散射和X射線晶體學分析下,得知YbeA CP74的整體的外觀結構並未顯著改變。而在熱穩定及化學穩定分析中,一些突變蛋白折疊穩定性明顯降低,並且在分析展開過程中發現,除了W100F外其他WtoF突變體都在熱穩定實驗出現了中間態。藉由15N-1H NMR化學穩定性實驗結果,我們推測CP74的蛋白展開始於W100所在的二聚體交界面。總體來說,透過研究WtoF突變體的實驗貢獻,我們得知了每個色胺酸在結構跟摺疊穩定性的不同重要程度、揭開可能的蛋白質展開過程以及發現W100是維持區域交換重要的胺基酸。
The knotted protein is a protein with a special structure. There are topological knots in all the knotted protein structures. The function and folding pathway of the knotted protein have been explored by scientists. In the previous study of knotted function, the trefoil-knotted protein YbeA was recombinant by the protein-engineering techniques circular permutation to create the new recombinant YbeA CP74. Unexpectedly, YbeA CP74 forms a domain-swapped dimer. To further investigate how the domain-swapped dimerization is achieved, we individually replaced the five endogenous tryptophan residues into phenylalanine – W7F, W19F, W48F, W72F, and W100F – to probe local and global folding events by Circular dichroism (CD) spectroscopy, intrinsic fluorescence, and nuclear magnetic resonance (NMR) spectroscopy. While the tryptophan-to-phenylalanine (WtoF) mutations did not significantly alter the native structures of YbeA CP74, according to small angle X-ray scattering and X-ray crystallography, equilibrium thermal and chemical unfolding analyses showed markedly reduced folding stability for some of the variants. All WtoF variants, except W100F, which is highly destabilized, exhibited two distinct thermal unfolding events evidenced by differential scanning calorimetry. Loss of folding cooperativity was also observed. As well as, the results of Circular dichroism spectroscopy and intrinsic fluorescence of chemical stability showed that the stability of α-helix where W100 is located is flexible. By monitoring tryptophan indole 15N-1H NMR correlations as a function of urea concentration, we speculated that the unfolding of CP74 begins at the hinge region of the dimer interface where W100 resides. In summary, by teasing out the spectral contributions of these WtoF mutants, we knew the importance of the structure and folding stability of each tryptophan, uncovered the possible protein unfolding pathway of YbeA CP74 and confirm W100 is a key point on locking YbeA CP74 domain swapping structure.
1. Mansfield ML. Are There Knots in Proteins. Nat Struct Biol 1994; 1(4):213-214.
2. Jamroz M, Niemyska W, Rawdon EJ, Stasiak A, Millett KC, Sulkowski P, et al. KnotProt: a database of proteins with knots and slipknots. Nucleic Acids Res 2015; 43(D1):D306-D314.
3. Faisca PFN. Knotted proteins: A tangled tale of Structural Biology. Comput Struct Biotec 2015; 13:459-468.
4. Thiruselvam V, Kumarevel T, Karthe P, Kuramitsu S, Yokoyama S, Ponnuswamy MN. Crystal structure analysis of a hypothetical protein (MJ0366) from Methanocaldococcus jannaschii revealed a novel topological arrangement of the knot fold. Biochem Bioph Res Co 2017; 482(2):264-269.
5. Nureki O, Shirouzu M, Hashimoto K, Ishitani R, Terada T, Tamakoshi M, et al. An enzyme with a deep trefoil knot for the active-site architecture. Acta Crystallogr D 2002; 58:1129-1137.
6. Taylor WR. A deeply knotted protein structure and how it might fold. Nature 2000; 406(6798):916-919.
7. Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2016; 473:2453-2462.
8. Bolinger D, Sulkowska JI, Hsu HP, Mirny LA, Kardar M, Onuchic JN, et al. A Stevedore's Protein Knot. Plos Comput Biol 2010; 6(4).
9. Hori H. Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7(1).
10. Tkaczuk KL, Dunin-Horkawicz S, Purta E, Bujnicki JM. Structural and evolutionary bioinformatics of the SPOUT superfamily of methyltransferases. Bmc Bioinformatics 2007; 8.
11. Wagner JR, Brunzelle JS, Forest KT, Vierstra RD. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 2005; 438(7066):325-331.
12. Reyes-Turcu FE, Wilkinson KD. Polyubiquitin Binding and Disassembly By Deubiquitinating Enzymes. Chem Rev 2009; 109(4):1495-1508.
13. Purta E, Kaminska KH, Kasprzak JM, Bujnicki JM, Douthwaite S. YbeA is the m(3)Psi methyltransferase RlmH that targets nucleotide 1915 in 23S rRNA. Rna 2008; 14(10):2234-2244.
14. Mallam AL, Jackson SE. The dimerization of an alpha/beta-knotted protein is essential for structure and function. Structure 2007; 15(1):111-122.
15. Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM. Favin Versus Concanavalin-a - Circularly Permuted Amino-Acid Sequences. P Natl Acad Sci USA 1979; 76(7):3218-3222.
16. Uliel S, Fliess A, Unger R. Naturally occurring circular permutations in proteins. Protein Eng 2001; 14(8):533-542.
17. Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. P Natl Acad Sci USA 1999; 96(20):11241-11246.
18. Sanders KE, Lo J, Sligar SG. Intersubunit circular permutation of human hemoglobin. Blood 2002; 100(1):299-305.
19. Mallam AL, Jackson SE. A comparison of the folding of two knotted proteins: YbeA and YibK. J Mol Biol 2007; 366(2):650-665.
20. Ero R, Leppik M, Liiv A, Remme J. Specificity and kinetics of 23S rRNA modification enzymes RlmH and RluD. Rna 2010; 16(11):2075-2084.
21. Koh CS, Madireddy R, Beane TJ, Zamore PD, Korostelev AA. Small methyltransferase RlmH assembles a composite active site to methylate a ribosomal pseudouridine. Sci Rep-Uk 2017; 7.
22. Ko KT, Hu IC, Huang KF, Lyu PC, Hsu SD. Untying a Knotted SPOUT RNA Methyltransferase by Circular Permutation Results in a Domain-Swapped Dimer. Structure 2019; 27(8):1224-1233 e1224.
23. Palego L, Betti L, Rossi A, Giannaccini G. Tryptophan Biochemistry: Structural, Nutritional, Metabolic, and Medical Aspects in Humans. J Amino Acids 2016; 2016:8952520.
24. Vivian JT, Callis PR. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 2001; 80(5):2093-2109.
25. Chen Y, Barkley MD. Toward understanding tryptophan fluorescence in proteins. Biochemistry-Us 1998; 37(28):9976-9982.
26. Yamamoto T, Kobayashi T, Yoshikiyo K, Matsui Y, Takahashi T, Aso Y. A H-1 NMR spectroscopic study on the tryptophan residues of lysozyme included by glucosyl-beta-cyclodextrin. J Mol Struct 2009; 920(1-3):264-269.
27. Osborne A, Teng QC, Miles EW, Phillips RS. Detection of open and closed conformations of tryptophan synthase by N-15-heteronuclear single-quantum coherence nuclear magnetic resonance of bound 1-N-15-L-tryptophan. J Biol Chem 2003; 278(45):44083-44090.
28. Leone M, Rodriguez-Mias RA, Pellecchia M. Selective incorporation of 19F-labeled Trp side chains for NMR-spectroscopy-based ligand-protein interaction studies. Chembiochem 2003; 4(7):649-650.
29. Kimber BJ, Feeney J, Roberts GC, Birdsall B, Griffiths DV, Burgen AS, et al. Proximity of two tryptophan residues in dihydrofolate reductase determined by 19f NMR. Nature 1978; 271(5641):184-185.
30. Crowley PB, Kyne C, Monteith WB. Simple and inexpensive incorporation of F-19-Tryptophan for protein NMR spectroscopy. Chem Commun 2012; 48(86):10681-10683.
31. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 2006; 1(6):2876-2890.
32. Franke D, Petoukhov MV, Konarev PV, Panjkovich A, Tuukkanen A, Mertens HDT, et al. ATSAS 2.8: a comprehensive data analysis suite for small-angle scattering from macromolecular solutions. Journal of applied crystallography 2017; 50(Pt 4):1212-1225.
33. Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res 2010; 38(Web Server issue):W540-544.
34. Stern F. Dependence on Moisture Content of the Small Angle X-Ray Scattering Power of Cellulose Fibres. T Faraday Soc 1955; 51(3):430-441.
35. Koch MH, Vachette P, Svergun DI. Small-angle scattering: a view on the properties, structures and structural changes of biological macromolecules in solution. Quarterly reviews of biophysics 2003; 36(2):147-227.
36. Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology 1997; 276:307-326.
37. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D Biological Crystallography 2010; 66(2):213-221.
38. Harder ME, Deinzer ML, Leid ME, Schimerlik MI. Global analysis of three-state protein unfolding data. Protein Sci 2004; 13(8):2207-2222.
39. Baryshnikova EN, Melnik BS, Finkelstein AV, Semisotnov GV, Bychkova VE. Three-state protein folding: experimental determination of free-energy profile. Protein Sci 2005; 14(10):2658-2667.
40. Sriramoju MK, Chen Y, Lee YC, Hsu SD. Topologically knotted deubiquitinases exhibit unprecedented mechanostability to withstand the proteolysis by an AAA+ protease. Sci Rep 2018; 8(1):7076.
41. Lee YTC, Chang CY, Chen SY, Pan YR, Ho MR, Hsu S-TD. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Sci Rep 2017; 4:45174.
42. Wang I, Chen S-Y, Hsu S-TD. Unraveling the Folding Mechanism of the Smallest Knotted Protein, MJ0366. Journal of Physical Chemistry B 2015; 119(12):4359-4370.
43. Schanda P, Kupce E, Brutscher B. SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 2005; 33(4):199-211.
44. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6(3):277-293.
45. Garcia De La Torre J, Huertas ML, Carrasco B. Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 2000; 78(2):719-730.
46. Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 2015; 589(19 Pt A):2570-2577.