研究生: |
林員正 Lin, Yuan-Zheng |
---|---|
論文名稱: |
雙饋式感應風力發電機組故障不間斷運轉控制策略之研究 Fault Ride Through Control of Doubly-Fed Induction Generators for Wind Power Applications |
指導教授: |
朱家齊
Chu, Chia-Chi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 雙饋式感應發電機 、故障不間斷運轉能力 、保護電路 、回饋線性化 、滑動模式控制 |
外文關鍵詞: | Doubly-Fed Induction Generators, Fault Ride Through, Crowbar Protection, Feedback Linearization, Sliding Control |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著再生能源的發展,風力發電的裝機容量佔系統中的供電比例越來越高,在歐美一些國家其風力發電所佔比例已超過10%,因此當系統發生故障,若風電機組任意地與系統進行解聯,會造成系統失穩;因此為了維持電力系統穩定運行,歐美國家都相繼提出風力發電的運轉規範,要求風電機組在系統故障期間必須維持併網運行,這種故障期間不間斷運行的能力稱為故障不間斷運轉能力。
然而當系統故障期間,風電機組維持併網運行,雙饋式感應發電機轉子側會產生極大的故障電流,因此衝擊電力轉換器,造成功率電晶體或者直流電容損壞,而導致電力轉換器失去控制能力,因此風電機組無法維持正常運行。本論文針對雙饋式感應發電機故障不間斷運轉控制策略進行深入研究。其貢獻有以下三點:
1.建構完整的雙饋式感應發電機動態模型,透過特徵値分析,探討當系統發生故障時,若未有合適的故障不間斷運轉控制策略,會造成雙饋式感應發電系統不穩定。
2.探討各種雙饋式感應發電機故障不間斷運轉控制策略:包含(1)保護電路控制策略,(2)應用回饋線性化的非線性控制理論於雙饋式感應發電機故障不間斷運轉控制策略,強化故障不間斷運轉能力,(3)實現滑動模式控制理論於雙饋式感應發電機故障不間斷運轉控制策略,強化故障不間斷運轉能力。
3.以電磁暫態分析軟體(PSCAD)建模,以單機對無限大匯流排以及兩區四機做為測試系統,驗證各種控制策略是否達到故障不間斷運轉,並比較其控制效能優劣。
As the number of wind installations has grown worldwide at unprecedented rates in recent years, the average size of installations has increased due to the advent of larger capacity machine, variable speed technology, and an increasing number of off-shore sites. The raises the concern that widespread tripping of wind generators following disturbances could lead to propagation of transient instabilities and could potentially cause local or system wide blackouts. This has provoked many utilities to adopt fault ride-through (FRT) capability for wind turbines.
This thesis will focus on the fault ride-through capability enhancement of conventional doubly-fed induction generators (DFIG), which are widely used in wind power generation. Basic operation principles and control algorithms of DFIGs and the corresponding converter for stability studies will be presented first. Simulation verifications are performed by PSCAD. In this thesis, technical enhancements of the FRT capability are achieved through the following steps:
1.Dynamical mechanisms of the linearized DFIG will be conducted by eigenvalue analysis. It will be shown that the DFIG system under the conventional current control method will become unstable if the grid voltage is sufficiently low.
2.The FRT capability can be enhanced by advanced control algorithms in addition to the conventional current control methods. The most straight forward method is the so-called crowbar protection. The DFIG and its associated converter system have to be protected against severe grid faults with considering proper converters and crowbar switching. Alternatively, the FRT can be achieved by applying the advanced nonlinear control theory, including state feedback linearization and the input-output feedback linearization. In this thesis, the sliding mode control theory is applied for FRT enhancement. Both 5th order and the reduced 3rd order DFIG system will be utilized for sliding controller synthesis. Simulations of one-machine-infinite-bus system and a two-area-four-machine system are performed to verify dynamical characteristics of the proposed sliding control. Performance comparisons among existing FRT enhanced control laws will also be examined through numerical explorations
[1]
E. ON NETz Grid Code. High and extra high voltage. E.On Netz GmbH, Bayreuth, Germany. Status 1, 2003.
[2]
A. G. Abo-Khalil, D. C. Lee and S. H. Lee, “Grid connection of doubly-fed induction generators in wind energy conversion system”, Proceedings of the 5th International Conference on Power Electronics and Motion Control, pp. 1-5, 2006.
[3]
P. M. Anderson and A. Bose, “Stability simulation of wind turbine systems”, IEEE Trans. on Power Apparatus and Systems, Vol. PAS-102, No. 12, pp. 3791-3795, 1983.
[4]
S. Bharadwaj, A. V. Rao and K. D. Mease, “Entry trajectory tracking law via feedback linearization”, Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, pp. 726-732, 1998.
[5]
I. Boldea, Variable Speed Generators, CRC, Florida, 2006.
[6]
R. Cardenas, R. Pena, J. Clare, G. Asher and J. Proboste, “MRAS observers for sensorless control of doubly-fed induction generators”, IEEE Trans. on Power Electronics, Vol. 23, No. 3, pp. 1075-1084, 2008.
[7]
B. S. Chen and Y. Y. Hsu, “An analytical approach to harmonic analysis and controller design of a STATCOM”, IEEE Trans. on Power Delivery, Vol. 22, No. 1, pp. 423-432, 2007.
[8]
R. G. De Almeida, J. A. P. Lopes and J. A. L. Barreiros, “Improving power system dynamic behavior through doubly fed induction machines controlled by static converter using fuzzy control”, IEEE Trans. on Power Systems, Vol. 19, No. 4, pp. 613-621, 2004.
[9]
J. B. Ekanayake, L. Holdsworth and N. Jenkins, “Comparison of 5th order and 3rd order machine models for doubly fed induction generator(DFIG) wind turbines”, Electric Power Systems Research, Vol. 67, No. 3, pp. 207-215, 2003.
[10]
I. Erlich, J. Kretschmann, S. Mueller-Engelhardt, F. Koch and J. Fortmann, “Modeling of wind turbines based on doubly-fed induction generators for power system stability studies”, IEEE Trans. on Power Systems, Vol. 22, No. 3, pp. 1-8, 2007.
[11]
R. Esmaili, L. Xu and D. K. Nichols, “A new control method of permanent magnet generator for maximum power tracking in wind turbine application”, Proceedings of 2005 IEEE Power Engineering Society General Meeting, Vol. 3, pp. 2090-2095, 2005.
[12]
C. Feltes, S. Engelhardt, J. Kretschmann, J. Fortmann, F. Koch and I. Erlich, “High voltage ride-through of DFIG-based wind turbines”, Proceedings of 2008 IEEE Power and Energy Society General Meeting, pp. 1-8, 2008.
[13]
P. S. Flannery and G. Venkataramanan, “A fault tolerant doubly fed induction generator wind turbine using a parallel grid side rectifier and series grid side converter”, IEEE Trans. on Power Electronics, Vol. 23, No. 3, pp. 1126-1135, 2008.
[14]
B. Hopfensperger, D. J. Atkinson and R. A. Lakin, “Stator-flux oriented control of a doubly-fed induction machine: with and without position encoder”, Proceedings of IEE on Electric Power Applications, Vol. 147, No. 4, pp. 241-250, 2000.
[15]
N. Hur, J. Jung and K. Nam, “A fast dynamic DC-link power-balancing schemefor a PWM converter-inverter system”, IEEE Trans. on Industrial Electronics, Vol. 48, No. 4, pp. 794-803, 2001.
[16]
F. Iov, A. D. Hansen, P. E. Sorensen and N. A. Cutululis, “Mapping of grid faults and grid codes”, Riso report, Riso-R-1617(EN), 2007.
[17]
A. K. Jain and V. T. Ranganathan, “Wound rotor induction generator with sensorless control and integrated active filter for feeding nonlinear loads in a stand-alone grid”, IEEE Trans. on Industrial Electronics, Vol. 55, No. 1, pp. 218-228, 2008.
[18]
G. Joos, “Wind turbine generator low voltage ride through requirements and solutions”, Proceedings of 2008 IEEE Power and Energy Society General Meeting, pp. 1-7, 2008.
[19]
P. Ledesma and J. Usaola, “Doubly fed induction generator model for transient stability analysis”, IEEE Trans. on Energy Conversion, Vol. 20, No. 2, pp. 388-397, 2005.
[20]
D. C. Lee, G. M. Lee and K. D. Lee, “DC-bus voltage control of three-phase AC/DC PWM converters using feedback linearization”, IEEE Trans. on Industry Applications, Vol. 36, No. 3, pp. 826-833, 2000.
[21]
B. Lu and B. T. Ooi, “Nonlinear control of voltage-source converter systems”, IEEE Trans. on Power Electronics, Vol. 22, No. 4, pp.1186-1195, 2007.
[22]
Q. Lu, Y. Sun and S. Mei, Nonlinear Control Systems and Power System Dynamics, Kluwer Academic Publishers, Boston, 2001.
[23]
R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice-Hall, London, 1998.
[24]
H. J. Marquez, Nonlinear Control Systems Analysis and Design, Wiley, NJ, 2003.
[25]
F. Mei and B. Pal, “Modal analysis of grid-connected doubly fed induction generators”, IEEE Trans. on Energy Conversion, Vol. 22, No. 3, pp. 728-736, 2007.
[26]
J. Morren and S. W. H. de Haan, “Ridethrough of wind turbines with doubly-fed induction generator during a voltage dip”, IEEE Trans. on Energy Conversion, Vol. 20, No. 2, pp. 435-441, 2005.
[27]
A. Mullane, G. Lightbody and R. Yacamini, “Wind-turbine fault ride-through enhancement”, IEEE Trans. on Power Systems, Vol. 20, No. 4, pp. 1929-1937, 2005.
[28]
A. Petersson, L. Harnefors and T. Thiringer, “Evaluation of current control methods for wind turbines using doubly-fed induction machines”, IEEE Trans. on Power Electronics, Vol. 20, No. 1, pp. 227-235, 2005.
[29]
W. F. Praeg, “A high-current low-pass filter for magnet power supplies”, IEEE Trans. on Industrial Electronics and Control Instrumentation, Vol. IECI-17, No. 1, pp. 16-22, 1970.
[30]
L. Shi, Z. Xu, J. Hao and Y. Ni, “Modelling analysis of transient stability simulation with high penetration of grid-connected wind farms of DFIG type”, Wind Energy, Vol. 10, No. 4, pp. 303-320, 2007.
[31]
B. Singh and S. N. Singh, “Wind power interconnection into the power system: a review of grid code requirments”, The Electricity Journal, Vol. 22, No. 5, pp. 54-63, 2009.
[32]
S. Skogestad and I. Poslethwaite, Multivariable Feedback Control, Wiley, New York, 1996.
[33]
G. R. Slemon, Magnetoelectric Drives: Transducers, Transformers, and Machines, John Wiley and Sons, New York, 1966.
[34]
G. R. Slemon, “Circuit models for polyphase machines”, Electric Machines and Power Systems, Vol. 8, No. 4/5, pp. 369-379, 1983.
[35]
J. G. Slootweg, S. W. H. De Haan, H. Polinder and W. L. Kling, “General model for representing variable speed wind turbines in power system dynamics simulations”, IEEE Trans. on Power Systems, Vol. 18, No. 1, pp. 144-151, 2003.
[36]
F. Valenciaga, P. F. Puleston and S. K. Spurgeon, “A geometric approach for the design of MIMO sliding controllers: Application to a wind-driven doubly fed induction generator”, Int. Journal of Robust and Nonlinear Control, Vol. 19, No. 1, pp. 22-39, 2008.
[37]
F. Wu, X. P. Zhang, P. Ju and M. J. H. Sterling, “Decentralized nonlinear control of wind turbine with doubly fed induction generator”, IEEE Trans. on Power Systems, Vol. 23, No. 2, pp. 613-621, 2008.
[38]
L. Xu, “Coordinated control of DFIG’s rotor and grid side converters during network unbalance”, IEEE Trans. on Power Electronics, Vol. 23, No. 3, pp. 1041-1049, 2008.
[39]
S. Yamamura, AC Motors for High-Performance Applications, Marcel Dekker, New York, 1986.
[40]
洪嘉駿,雙饋式感應發電機轉子側電力轉換器控制技術開發與實現,國立清華大學碩士論文,2008年。