研究生: |
張秉文 |
---|---|
論文名稱: |
以機器學習分析個人化手勢之研究與應用 A Study and Application of Machine Learning Approach for Recognizing Personal Human Gesture |
指導教授: | 區國良 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
中文關鍵詞: | 人機互動 、手勢辨識 、機器學習 、決策樹 |
外文關鍵詞: | HCI, Hand Gesture, Machine Learning, Decision Tree |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手勢辨識已經逐漸成為生活中重要的人機互動介面。但是,很少有研究討論透過機器學習建立個人化手勢軌跡辨識模型。本論文利用Wii Remote以及紅外線光筆為硬體工具,建立一套具有手勢擷取、自動特徵分析、個人化手勢模型建立功能的系統。使用者可以經簡單的訓練過程,透過機器學習建立專屬於自己的個人化手勢辨識模型,利用客製化手勢指令使用上直覺、簡單、短暫、具有獨特性之特點,減少學習、適應的時間,更快發揮統效益,減少人為操作所產生的系統錯誤。
本研究共可辨識12種手勢,經10位參與實驗的使用者測試後完全訓練平均正確率達93%,標準差5.69%;實驗驗證後六位使用者之平均正確率為74.995%,標準差16.72%。
Gesture has become an important Human Computer Interaction (HCI) in daily life. Yet seldom research focus on building personalized hand-gesture recognizing model. In this thesis, a system with hand position tracking and gesture feature capturing was proposed for adapting personalized gesture model. Thru a simple and short training process, each user can build a characteristic personalized model of gesture recognizing. With this model users can enjoy the intuitional, simple, fast and unique hand gesture interface which reduce learning and adapting time and decrease the system error due to improper human manipulation.
In this thesis, 12 different hand gestures are identified successfully. By using Wii Remote and customized IR light pen, 10 participants have a 93% correct model training rate, and 6 out of these 10 users have a 75% correct recognizing. Therefore, by deploying the system daily life with household electric appliances can be more convenient and more ergonomic.
英文文獻
1. Pavlovic, V.I., R. Sharma, and T.S. Huang, Visual Interpretation of Hand Gestures for Human-Computer Interaction: A Review. IEEE Trans. Pattern Anal. Mach. Intell., 1997. 19(7): p. 677-695.
3. Argyros, A. and M. Lourakis, Vision-Based Interpretation of Hand Gestures for Remote Control of a Computer Mouse, in Computer Vision in Human-Computer Interaction. 2006. p. 40-51.
4. Malima, A., E. Özgür, and M. Çetin, A Fast Algorithm For Vision-Based Hand Gesture Recognition For Robot Control, in Faculty of Engineering and Natural Sciences. 2006, Sabancı University: Tuzla, İstanbul, Turkey.
5. Vogiazou, Y., et al., Design for emergence: experiments with a mixed reality urban playground game. Personal and Ubiquitous Computing, 2006. 11(1): p. 45-58.
6. Vasilakos, A.V., et al., Interactive theatre via mixed reality and Ambient Intelligence. Information Sciences, 2008. 178(3): p. 679-693.
7. Wang, X. and P.S. Dunston, User perspectives on mixed reality tabletop visualization for face-to-face collaborative design review. Automation in Construction, 2008. 17(4): p. 399-412.
8. Pan, Z., et al., Virtual reality and mixed reality for virtual learning environments. Computers & Graphics, 2006. 30: p. 20-28.
9. Schalk, G., et al., BCI2000: a general-purpose brain-computer interface (BCI) system. Biomedical Engineering, IEEE Transactions on, 2004. 51(6): p. 1034-1043.
10. Blankertz, B., et al., The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials. Biomedical Engineering, IEEE Transactions on, 2004. 51(6): p. 1044-1051.
11. Blankertz, B., et al., The Berlin Brain-Computer Interface, in Computational Intelligence: Research Frontiers. 2008. p. 79-101.
12. Blankertz, B., et al., The Berlin Brain--Computer Interface: Accurate Performance From First-Session in BCI-NaÏve Subjects. Biomedical Engineering, IEEE Transactions on, 2008. 55(10): p. 2452-2462.
13. Reilly, R.B., Applications of face and gesture recognition for human-computer interaction, in Proceedings of the sixth ACM international conference on Multimedia: Face/gesture recognition and their applications. 1998, ACM: Bristol, United Kingdom.
16. Sturman, D.J. and D. Zeltzer, A Survey of Glove-based Input. IEEE Comput. Graph. Appl., 1994. 14(1): p. 30-39.
17. Kuch, J.J. and T.S. Huang, Vision based hand modeling and tracking for virtual teleconferencing and telecollaboration, in Proceedings of the Fifth International Conference on Computer Vision. 1995, IEEE Computer Society.
18. Segen, J. and S. Kumar, Fast and Accurate 3D Gesture Recognition Interface, in Proceedings of the 14th International Conference on Pattern Recognition-Volume 1 - Volume 1. 1998, IEEE Computer Society.
19. Chin-Chen, C., I.Y. Chen, and H. Yea-Shuan. Hand pose recognition using curvature scale space. in Pattern Recognition, 2002. Proceedings. 16th International Conference on. 2002.
20. Park, H., et al., An HMM Based Gesture Recognition for Perceptual User Interface, in Advances in Multimedia Information Processing - PCM 2004. 2005. p. 1027-1034.
21. Park, H., et al., Recognition of Human Action for Game System, in Artificial Intelligence and Simulation. 2005. p. 100-108.
22. Xia, L. and K. Fujimura. Hand gesture recognition using depth data. in Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on. 2004.
23. Gupta, L. and M. Suwei, Gesture-based interaction and communication: automated classification of hand gesture contours. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2001. 31(1): p. 114-120.
24. Witten, I.H. and E. Frank, Data mining: practical machine learning tools and techniques with Java implementations. SIGMOD Rec., 2002. 31(1): p. 76-77.
25. Mitchell, T.M., Machine Learning. 2006.
26. Arthur Louis Odom and Lloyd H. Barrow, Development and application of a two-tier diagnostic test measuring college biology students' understanding of diffusion and osmosis after a course of instruction. Journal of Research in Science Teaching, 1995. 32(1): p. 45-61.
27. Quinlan, J.R., C4. 5: programs for machine learning. 1993, San Mateo, CA: Morgan Kaufmann.
28. Holmes, G., A. Donkin, and I.H. Witten, WEKA: a machine learning workbench. 1994, Department of Computer Science: Hamilton, New Zealand: University of Waikato.
29. Feigenbaum, E.A., The art of artificial intelligence: I. Themes and case studies of knowledge engineering. 1977, Stanford University.
30. Quinlan, J.R., Induction of decision trees. Machine Learning, 1986. 1(1): p. 81-106.
31. Peek, B. Managed Library for Nintendo's Wiimote. Available from: http://blogs.msdn.com/coding4fun/archive/2007/03/14/1879033.aspx.
32. Lee, J.C. Wiimote Multipoint Grid. Available from: http://johnnylee.net/projects/wii/WiiMultipointGrid.zip.
中文文獻
2. 陳培森, 看護系統之監控與辨識功能建立, in Electrical Engineering. 2005, 國立中央大學.
14. 國科會工程處, 國科會工程處控制學門規劃主題. June/15/2009.
15. 唐國豪, 人與機器的對話 - 人機互動, in 唐國豪. 2003. p. 6.