簡易檢索 / 詳目顯示

研究生: 陳品璇
Chen, Pin-Hsuan
論文名稱: 電雙層場效電晶體生物感測器之SARS-CoV-2 病毒蛋白快篩平台的開發研究
Development of a Rapid Screening Platform for SARS-CoV-2 Virus Protein using Electric Double- Layer-gated Field Effect Transistor-based Biosensors
指導教授: 王玉麟
Wang, Yu-Lin
口試委員: 李博仁
Li, Bor-Ran
林宗宏
Lin, Zong-Hong
李昇憲
Li, Sheng Shian
陳榮治
Chen, Jung-Chih
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 57
中文關鍵詞: 新冠肺炎SARS-CoV-2病毒電晶體生醫感測器快篩晶片
外文關鍵詞: Covid-19, SARS-CoV-2, EDL FET, screening chip
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 新冠肺炎(COVID-19)是在2019年末爆發的高傳染性疾病,世界衛生組織 (World Health Organization, WHO)亦宣布此為公共衛生緊急事件。這種傳染病同時也對各國的衛生保健造成強大威脅,在未有特定藥物可以治療此疾病的狀況下,透過有效的快速檢測可以有效監控疾病流向,並防止傳染病的擴散。目前臨床檢測病毒最常用的方法是實時逆轉錄酶-聚合酶鏈反應(qRT-PCR)。然而,這種方法既耗時又昂貴,在快速篩檢的需求下並不那麼適用。
    因此本論文基於上述原因,提出一快速篩檢COVID-19的生醫感測器平台。基於抗體及抗原的免疫專一性,當SARS-CoV-2病毒的核衣殼蛋白與抗體專一性結合時,此感測器可以觀察到電訊號的變化,同時進一步使用電雙層閘控場效電晶體(electric double-layer gated field effect transistor, EDL-gated FET)生物感測器來檢測其信號。在此研究中,我們透過添加病毒的核衣殼蛋白來測量感測器響應,並繪製校準曲線。螢光測量技術亦被應用於本研究中,做表面修飾的分析及確認。
    另外本研究中提出電雙層電容模型,以及使用冷凍乾燥技術對感測晶片進行保存。該生物感測器具有低檢測極限,且方便快速的特性。同時該感測器還可用作快速篩檢COVID-19 的即時診斷工具。


    COVID-19, is an infectious disease and a major healthcare threat according to World Health Organization (WHO). In the absence of specific treatments, rapid detection can effectively prevent the spread of disease. At present, the most common method for clinical diagnosis of COVID-19 is real-time reverse transcriptase-polymerase chain reaction (RT-PCR). However, this method takes time and costs a lot.
    In this study, a platform based on the electric double layer (EDL)-gated field-effect transistors (FET) biosensors for the rapid screening of COVID-19 was established. The sensor response was measured by adding SARS-CoV-2 virus nucleocapsid protein and a calibration curve was plotted. Fluorescence measurement technology was used in this study for the analysis and confirmation of surface modification.
    In addition, this research proposes an EDL capacitor model and uses freeze-drying technology to store the sensor chips. The biosensor has a low detection limit and is convenient and fast. At the same time, the sensor can also be used as a real-time diagnostic tool for rapid screening of COVID-19.

    Table of Contents 摘要 i ABSTRACT ii List of Tables v List of Figures vi Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objective 4 Chapter 2 Literature Review 5 2.1 COVID-19 and SARS-CoV-2 virus 5 2.2 Nucleocapsid protein as the biomarker 6 2.3 Diagnosis methods for COVID-19 7 2.4 Specimens for COVID-19 10 2.5 Field effect transistor (FET) biosensors 11 2.5.1 Electric double layer (EDL) model 11 2.5.2 Charge screening effect 14 2.6 Freeze-drying 15 2.6.1 Freeze-drying cycle 15 2.6.2 Sugar as a protectant in freeze-drying 17 Chapter 3 Experimental Design 18 3.1 Sensor array chip fabrication 18 3.2 Surface functionalization 19 3.2.1 Surface clean process 19 3.2.2 Surface modification 19 3.3 Proteins and immunoassays 21 3.4 Electrical signal measurement 21 3.5 Fluorescent experimental 22 3.5.1 Capture antibody 22 3.5.2 Antigen capture confirmation 22 Chapter 4 Results and Discussion 24 4.1 Characteristic curve of MOSFET LND 150 25 4.2 Surface functionalization 26 4.2.1 Fluorescent signal in different test solution 26 4.2.2 Electrical signal measurement of surface functionalization 28 4.3 N protein detection using extended gate EDL FET biosensor for antibody Selection 29 4.4 N protein detection using extended gate EDL FET biosensor 31 4.4.1 N protein detection in UTM 31 4.4.2 N protein detection in artificial saliva 33 4.4.3 N protein detection in artificial saliva and UTM (50%v/v) with SDS 34 4.5 Sensing Mechanism of EDL FET biosensors 36 4.6 Freeze-drying preservation 40 4.6.1 Freeze-drying cycle 40 4.6.2 Sucrose as a protectant in freeze-drying cycle 42 4.6.3 Antibody immobilization condition in freeze-drying cycle 44 4.7 Sensor detection for selectivity 46 4.7.1 Sensor detection for selectivity 46 4.7.2 Antigen capture confirmation 48 Chapter 5 Summary and Future Work 50 REFERENCE 52

    [1] A. E.Gorbalenya et al., “The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2,” Nat. Microbiol., vol. 5, no. 4, pp. 536–544, 2020, doi: 10.1038/s41564-020-0695-z.
    [2] D.Wang et al., “Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China,” JAMA - J. Am. Med. Assoc., vol. 323, no. 11, pp. 1061–1069, 2020, doi: 10.1001/jama.2020.1585.
    [3] A. B.Docherty et al., “Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: Prospective observational cohort study,” BMJ, vol. 369, pp. 1–2, 2020, doi: 10.1136/bmj.m1985.
    [4] M.Shen et al., “Recent advances and perspectives of nucleic acid detection for coronavirus,” J. Pharm. Anal., vol. 10, no. 2, pp. 97–101, 2020, doi: 10.1016/j.jpha.2020.02.010.
    [5] A.Tahamtan andA.Ardebili, “Real-time RT-PCR in COVID-19 detection: issues affecting the results,” Expert Rev. Mol. Diagn., vol. 20, no. 5, pp. 453–454, 2020, doi: 10.1080/14737159.2020.1757437.
    [6] X.Mei et al., “Artificial intelligence–enabled rapid diagnosis of patients with COVID-19,” Nat. Med., vol. 26, no. 8, pp. 1224–1228, 2020, doi: 10.1038/s41591-020-0931-3.
    [7] M.Yüce, E.Filiztekin, andK. G.Özkaya, “COVID-19 diagnosis —A review of current methods,” Biosens. Bioelectron., vol. 172, no. October 2020, 2021, doi: 10.1016/j.bios.2020.112752.
    [8] Y.Tang, J. E.Schmitz, D. H.Persing, andC. W.Stratton, “crossm Challenges,” J. Clin. Microbiol., vol. 58, no. 6, pp. 1–9, 2020.
    [9] R.Soleimani et al., “Clinical usefulness of fully automated chemiluminescent immunoassay for quantitative antibody measurements in COVID-19 patients,” J. Med. Virol., vol. 93, no. 3, pp. 1465–1477, 2021, doi: 10.1002/jmv.26430.
    [10] Access Bio, “CareStart COVID-19 Antigen: Instructions for Use,” US Food Drug Adm. website, 2020, [Online]. Available: https://www.fda.gov/media/142919/download.
    [11] Abbott Diagnostics, “BinaxNOWTM COVID-19 Ag CARD: Instructions for Use,” US Food Drug Adm. website, 2020, [Online]. Available: https://www.fda.gov/media/141570/download.
    [12] Quidel, “Sofia Flu A+B antigen FIA Protocol,” pp. 1–19, 2020.
    [13] T.Sofia et al., “For in vitro diagnostic use,” pp. 1–25, 1988.
    [14] D.Cucinotta andM.Vanelli, “WHO declares COVID-19 a pandemic,” Acta Biomed., vol. 91, no. 1, pp. 157–160, 2020, doi: 10.23750/abm.v91i1.9397.
    [15] WHO, “COVID-19 Weekly Epidemiological Update 35,” World Heal. Organ., no. December, pp. 1–3, 2021, [Online]. Available: https://www.who.int/docs/default-source/coronaviruse/situation-reports/weekly_epidemiological_update_22.pdf.
    [16] R.Woelfel et al., “Virological assessment of hospitalized cases of coronavirus disease 2019,” medRxiv, p. doi: 10.1101/2020.03.05.20030502, 2020.
    [17] A.Gorbalenya et al., “Severe acute respiratory syndrome-related coronavirus : The species and its viruses – a statement of the Coronavirus Study Group,” Nat. Microbiol., 2020, doi: 10.1101/2020.02.07.937862.
    [18] B.Udugama et al., “Diagnosing COVID-19: The Disease and Tools for Detection,” ACS Nano, vol. 14, no. 4, pp. 3822–3835, 2020, doi: 10.1021/acsnano.0c02624.
    [19] K.Strimbu andJ. A.Tavel, “What are biomarkers?,” Curr. Opin. HIV AIDS, vol. 5, no. 6, pp. 463–466, 2010, doi: 10.1097/COH.0b013e32833ed177.
    [20] J. K.Aronson andR. E.Ferner, “Biomarkers—a general review,” Curr. Protoc. Pharmacol., vol. 2017, no. March, pp. 9.23.1-9.23.17, 2017, doi: 10.1002/cpph.19.
    [21] M.Vatankhah et al., “CRISPR-based biosensing systems: a way to rapidly diagnose COVID-19.,” Crit. Rev. Clin. Lab. Sci., vol. 0, no. 0, pp. 1–27, 2020, doi: 10.1080/10408363.2020.1849010.
    [22] S.Mahari, A.Roberts, D.Shahdeo, andS.Gandhi, “eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2,” 2020, doi: 10.1101/2020.04.24.059204.
    [23] Z.Chen, Q.Wu, J.Chen, X.Ni, andJ.Dai, “A DNA Aptamer Based Method for Detection of SARS-CoV-2 Nucleocapsid Protein,” Virol. Sin., vol. 35, no. 3, pp. 351–354, 2020, doi: 10.1007/s12250-020-00236-z.
    [24] M. N.Islam et al., “RNA Biomarkers: Diagnostic and Prognostic Potentials and Recent Developments of Electrochemical Biosensors,” Small Methods, vol. 1, no. 7, p. 1700131, 2017, doi: 10.1002/smtd.201700131.
    [25] D. T. M.Leung et al., “Antibody response of patients with Severe Acute Respiratory Syndrome (SARS) targets the viral nucleocapsid,” J. Infect. Dis., vol. 190, no. 2, pp. 379–386, 2004, doi: 10.1086/422040.
    [26] W.Zeng et al., “Biochemical characterization of SARS-CoV-2 nucleocapsid protein,” Biochem. Biophys. Res. Commun., vol. 527, no. 3, pp. 618–623, 2020, doi: 10.1016/j.bbrc.2020.04.136.
    [27] N.Pisanic et al., “COVID-19 serology at population scale: SARS-CoV-2-specific antibody responses in saliva,” J. Clin. Microbiol., no. October, 2020, doi: 10.1128/jcm.02204-20.
    [28] V. M.Corman et al., “Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR,” Eurosurveillance, vol. 25, no. 3, 2020, doi: 10.2807/1560-7917.ES.2020.25.3.2000045.
    [29] R.Only, cobas ® SARS-CoV-2. .
    [30] Cepheid., “Xpert Xpress SARS-CoV-2. Instructions For Use. Available online: https://www.fda.gov/media/136314/download (accessed on 14 June 2021).,” no. January, 2021.
    [31] S.Lefever et al., “Comparison of the quantitative DiaSorin Liaison antigen test to RT-PCR for the diagnosis of COVID-19 in symptomatic and asymptomatic outpatients,” J. Clin. Microbiol., no. April, 2021, doi: 10.1128/jcm.00374-21.
    [32] G.Seo et al., “Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor,” ACS Nano, vol. 14, no. 4, pp. 5135–5142, 2020, doi: 10.1021/acsnano.0c02823.
    [33] N. C.Cady et al., “Multiplexed detection and quantification of human antibody response to COVID-19 infection using a plasmon enhanced biosensor platform,” Biosens. Bioelectron., vol. 171, no. September 2020, p. 112679, 2021, doi: 10.1016/j.bios.2020.112679.
    [34] N. K.Singh et al., “Hitting the diagnostic sweet spot: Point-of-care SARS-CoV-2 salivary antigen testing with an off-the-shelf glucometer,” Biosens. Bioelectron., vol. 180, no. February, p. 113111, 2021, doi: 10.1016/j.bios.2021.113111.
    [35] Y.Hirotsu et al., “Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients,” Int. J. Infect. Dis., vol. 99, pp. 397–402, 2020, doi: 10.1016/j.ijid.2020.08.029.
    [36] L.Azzi et al., “Saliva is a reliable tool to detect SARS-CoV-2,” J. Infect., vol. 81, no. 1, pp. e45–e50, 2020, doi: 10.1016/j.jinf.2020.04.005.
    [37] R.Xu, B.Cui, X.Duan, P.Zhang, X.Zhou, andQ.Yuan, “Saliva: potential diagnostic value and transmission of 2019-nCoV,” Int. J. Oral Sci., vol. 12, no. 1, 2020, doi: 10.1038/s41368-020-0080-z.
    [38] K. K. W.To et al., “Consistent detection of 2019 novel coronavirus in saliva,” Clin. Infect. Dis., vol. 71, no. 15, pp. 841–843, 2020, doi: 10.1093/cid/ciaa149.
    [39] P. H.Braz-Silva, D.Pallos, S.Giannecchini, andK. K. W.To, “SARS-CoV-2: What Can Saliva Tell Us?,” Oral Dis., no. April, pp. 1–2, 2020, doi: 10.1111/odi.13365.
    [40] A. L.Wyllie et al., “Saliva is more sensitive for SARS-CoV-2 detection in COVID-19 patients than nasopharyngeal swabs,” 2020, doi: 10.1101/2020.04.16.20067835.
    [41] V. C. C.Cheng et al., “Escalating infection control response to the rapidly evolving epidemiology of the coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong,” Infect. Control Hosp. Epidemiol., vol. 41, no. 5, pp. 493–498, 2020, doi: 10.1017/ice.2020.58.
    [42] R.Janissen et al., “InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection,” Nano Lett., vol. 17, no. 10, pp. 5938–5949, 2017, doi: 10.1021/acs.nanolett.7b01803.
    [43] F.Fathi, M. R.Rashidi, andY.Omidi, “Ultra-sensitive detection by metal nanoparticles-mediated enhanced SPR biosensors,” Talanta, vol. 192, no. September 2018, pp. 118–127, 2019, doi: 10.1016/j.talanta.2018.09.023.
    [44] S.Hideshima, R.Sato, S.Inoue, S.Kuroiwa, andT.Osaka, “Detection of tumor marker in blood serum using antibody-modified field effect transistor with optimized BSA blocking,” Sensors Actuators, B Chem., vol. 161, no. 1, pp. 146–150, 2012, doi: 10.1016/j.snb.2011.10.001.
    [45] A.Gao et al., “Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors,” Nano Lett., vol. 12, no. 10, pp. 5262–5268, 2012, doi: 10.1021/nl302476h.
    [46] X.Liu et al., “Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid,” Sensors Actuators, B Chem., vol. 176, pp. 22–27, 2013, doi: 10.1016/j.snb.2012.08.043.
    [47] Y.Imaizumi, T.Goda, A.Matsumoto, andY.Miyahara, “Identification of types of membrane injuries and cell death using whole cell-based proton-sensitive field-effect transistor systems,” Analyst, vol. 142, no. 18, pp. 3451–3458, 2017, doi: 10.1039/c7an00502d.
    [48] M. S.Makowski andA.Ivanisevic, “Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors,” Small, vol. 7, no. 14, pp. 1863–1875, 2011, doi: 10.1002/smll.201100211.
    [49] H.Du, X.Lin, Z.Xu, andD.Chu, Electric double-layer transistors: a review of recent progress, vol. 50, no. 17. Springer US, 2015.
    [50] A. P.Selvam andS.Prasad, “Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide,” Future Cardiol., vol. 9, no. 1, pp. 137–147, 2013, doi: 10.2217/fca.12.76.
    [51] T.Fujimoto andK.Awaga, “Electric-double-layer field-effect transistors with ionic liquids,” Phys. Chem. Chem. Phys., vol. 15, no. 23, pp. 8983–9006, 2013, doi: 10.1039/c3cp50755f.
    [52] T.Huttunen, M.Malinen, J. P.Kaipio, P. J.White, andK.Hynynen, “A full-wave helmholtz model for continuous-wave ultrasound transmission,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, no. 3, pp. 397–409, 2005, doi: 10.1109/TUFFC.2005.1417262.
    [53] V. L.Shapovalov andG.Brezesinski, “Breakdown of the Gouy - Chapman model for highly charged Langmuir monolayers: Counterion size effect,” J. Phys. Chem. B, vol. 110, no. 20, pp. 10032–10040, 2006, doi: 10.1021/jp056801b.
    [54] K. B.Oldham, “A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface,” J. Electroanal. Chem., vol. 613, no. 2, pp. 131–138, 2008, doi: 10.1016/j.jelechem.2007.10.017.
    [55] E.Laviron, “A multilayer model for the study of space distributed redox modified electrodes. Part I. Description and discussion of the model,” J. Electroanal. Chem., vol. 112, no. 1, pp. 1–9, 1980, doi: 10.1016/S0022-0728(80)80002-7.
    [56] Y. M.Lei et al., “Detection of heart failure-related biomarker in whole blood with graphene field effect transistor biosensor,” Biosens. Bioelectron., vol. 91, pp. 1–7, 2017, doi: 10.1016/j.bios.2016.12.018.
    [57] I.Sarangadharan et al., “High sensitivity cardiac troponin I detection in physiological environment using AlGaN/GaN High Electron Mobility Transistor (HEMT) Biosensors,” Biosens. Bioelectron., vol. 100, no. September 2017, pp. 282–289, 2018, doi: 10.1016/j.bios.2017.09.018.
    [58] H.Kawasaki, T.Shimanouchi, andY.Kimura, “Recent Development of Optimization of Lyophilization Process,” J. Chem., vol. 2019, 2019, doi: 10.1155/2019/9502856.
    [59] M. T.Hussain, N.Forbes, Y.Perrie, K. P.Malik, C.Duru, andP.Matejtschuk, “Freeze-drying cycle optimization for the rapid preservation of protein-loaded liposomal formulations,” Int. J. Pharm., vol. 573, p. 118722, 2020, doi: 10.1016/j.ijpharm.2019.118722.
    [60] V. P.Heljo, H.Harju, T.Hatanpää, G.Yohannes, andA. M.Juppo, “The effect of freeze-drying parameters and formulation composition on IgG stability during drying,” Eur. J. Pharm. Biopharm., vol. 85, no. 3 PART A, pp. 752–755, 2013, doi: 10.1016/j.ejpb.2013.03.033.
    [61] G.Kanojia et al., “The production of a stable Infliximab powder: The evaluation of spray and freeze-drying for production,” PLoS One, vol. 11, no. 10, pp. 1–14, 2016, doi: 10.1371/journal.pone.0163109.
    [62] D.Psimadas, P.Georgoulias, V.Valotassiou, andG.Loudos, “Molecular Nanomedicine Towards Cancer :,” J. Pharm. Sci., vol. 101, no. 7, pp. 2271–2280, 2012, doi: 10.1002/jps.
    [63] L.Jorgensen, S.Hostrup, E. H.Moeller, andH.Grohganz, “Recent trends in stabilising peptides and proteins in pharmaceutical formulation - Considerations in the choice of excipients,” Expert Opin. Drug Deliv., vol. 6, no. 11, pp. 1219–1230, 2009, doi: 10.1517/17425240903199143.
    [64] J. F.Carpenter andJ. H.Crowe, “An infrared spectroscopic study of the interactions of carbohydrates with dried proteins,” Biochemistry, vol. 28, no. 9, pp. 3916–3922, 1989, doi: 10.1021/bi00435a044.
    [65] M. M.Bertotto, “Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety.,” J. Sci. Food Agric., vol. 99, no. 4, pp. 115–360, 2019, doi: 10.13031/2013.17789.
    [66] D. A.Hook, J. A.Olhausen, J.Krim, andM. T.Dugger, “Evaluation of oxygen plasma and UV ozone methods for cleaning of occluded areas in MEMS devices,” J. Microelectromechanical Syst., vol. 19, no. 6, pp. 1292–1298, 2010, doi: 10.1109/JMEMS.2010.2067193.
    [67] A.Piralla, F.Giardina, F.Rovida, G.Campanini, andF.Baldanti, “Cellular DNA quantification in respiratory samples for the normalization of viral load: a real need?,” J. Clin. Virol., vol. 107, no. July, pp. 6–10, 2018, doi: 10.1016/j.jcv.2018.07.010.
    [68] S.Lambert-niclot, A.Cuffel, L.Pape, C.Vauloup-fellous, andL.Morand-joubert, “Evaluation of a Rapid Diagnostic Assay for Detection of,” J. Clin. Microbiol., vol. 58, no. May, pp. e00977-20, 2020.
    [69] G. P.Leonardi, A. M.Wilson, M.Dauz, andA. R.Zuretti, “Evaluation of respiratory syncytial virus (RSV) direct antigen detection assays for use in point-of-care testing,” J. Virol. Methods, vol. 213, pp. 131–134, 2015, doi: 10.1016/j.jviromet.2014.11.016.
    [70] “Bioactive monolaurin as an antimicrobial and its potential to improve the,” vol. 4, no. December, pp. 2355–2365, 2020.
    [71] L. A.Colnago et al., “Simple, low-cost and long-lasting film for virus inactivation using avian coronavirus model as challenge,” Int. J. Environ. Res. Public Health, vol. 17, no. 18, pp. 1–9, 2020, doi: 10.3390/ijerph17186456.
    [72] A. L. M.deSousa et al., “Sodium dodecyl sulfate as a viral inactivator and future perspectives in the control of small ruminant lentiviruses,” Arq. Inst. Biol. (Sao. Paulo)., vol. 86, pp. 1–9, 2019, doi: 10.1590/1808-1657000752018.

    QR CODE