研究生: |
顏煜洋 Yen, Yu-yang |
---|---|
論文名稱: |
以神經網路模型模擬經顱性磁刺激在腦部運動皮層引起的神經可塑性 A Spiking Neural Network Model of Motor Cortex for Transcranial Magnetic Stimulation-Induced Synaptic Plasticity |
指導教授: |
羅中泉
Lo, Chung-Chun |
口試委員: |
羅中泉
Lo, Chung-Chun 黃英儒 Huang, Ying-Zu 連正章 Lien, Cheng-Chang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 系統神經科學研究所 Institute of Systems Neuroscience |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 47 |
中文關鍵詞: | 經顱性磁刺激 、神經突觸可塑性 |
外文關鍵詞: | TBS, Transcranial magnetic stimulation, calcium-dependent plasticity, computational model |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經顱性磁刺激(transcranial magnetic stimulus, TMS)近年在有關腦部神經的醫療及研究上相當的受重視,因為它不必藉由手術或穿刺來對腦部神經元進行刺激,是種非侵入性的方式。TMS在舒緩神經性疾病造成的運動障礙症方面十分的有潛力,但目前只知道TMS藉由改變腦部神經突觸可塑性來達成這個效果;至於TMS如何引起突觸可塑性的改變,詳細的機制仍未清楚。
本研究的目的是建立一個模擬腦部運動皮層的神經網路模型,並以此研究TMS在腦部引起的反應。另外,為了研究神經可塑性的變化,我們同時基於現在的理論發展出新型的神經可塑性模型,用來描述TMS引起神經可塑性的機制。相關研究收錄在陳李睿同學的論文中(以多時間尺度的突觸可塑性模型研究重複經顱性磁刺激所造成的神經可塑性)。
我們所建立的神經網路模型能夠完整的模擬TMS在腦部運動皮層引起的反應,以及隨著TMS刺激強度增加而改變反應波形的特性;在模擬各種腦部連結缺陷的實驗中,也展現出合理且多變的現象。這些結果顯示這個神經網路模型十分有發展潛力,在調整細部的參數之後便可以應用在研究TMS在腦部引起的反應上。更進一步,加入各種條件及額外的模組之後,將神經網路模型用以模擬各種神經性疾病的狀況,這也是我們所期望達成的終極目標。
Transcranial magnetic stimulus (TMS) is a non-invasive remedy which had reported the ability in easing the motor disorders caused by neural diseases by inducing modifications in synaptic plasticity. TMS stimulate neurons by a massive but transient magnetic pulse, which creating an electromagnetic induction current within the focus. As a surgery-free method, it has been popular in brain research of medicine and research field. However, the detailed mechanism of TMS-induced plasticity change is still a mystery.
In this study, we built a spiking neural network model of primary motor cortex to simulate the cortical activity and synaptic plasticity responding to TMS stimulations. At the same time, we develop a new hypothesis with single neuron circuit to describe the mechanism of plasticity change induced by TMS. The results are archived in the thesis written by Mr. Li-Rui Chen. (Title: A model of synaptic plasticity at multiple temporal scales for the neuronal plasticity induced by repetitive transcranial magnetic stimulations.)
The cortical network model we built could emulate the full-featured activity aroused by TMS in the motor cortex. In model prediction, it also exhibits a reasonable response and activity. The results in this thesis support that our network model have good potential in the studying of TMS-induced responses, although it needs more parameter tuning. After that, we could apply it further to the study of the response of TMS in different neural diseases model, which is also the ultimate goal we expect to achieve from this first small step.
1. Selkoe DJ. Alzheimer’s Disease Is a Synaptic Failure. Science. 2002 Oct 25;298(5594):789–91.
2. Calabresi P, Mercuri NB, Di Filippo M. Synaptic Plasticity, Dopamine and Parkinson’s Disease: One Step Ahead. Brain. 2009 Feb 1;132(2):285–7.
3. Huang Y, Rothwell JC, Lu C, Wang J, Chen R. Restoration of motor inhibition through an abnormal premotor‐motor connection in dystonia. Movement Disorders. 2010 Mar 22;25(6):696–703.
4. Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C. Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. European Journal of Neurology. 2008 Oct 28;15(12):1286–92.
5. Ferreri F, Pasqualetti P, Määttä S, Ponzo D, Guerra A, Bressi F, et al. Motor cortex excitability in Alzheimer’s disease: a transcranial magnetic stimulation follow-up study. Neuroscience Letters. 2011 Apr 1;492(2):94–8.
6. Benninger DH, Berman BD, Houdayer E, Pal N, Luckenbaugh DA, Schneider L, et al. Intermittent Theta-Burst Transcranial Magnetic Stimulation for Treatment of Parkinson Disease. Neurology. 2011 Feb 15;76(7):601–9.
7. Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nature Reviews Neuroscience. 2007 Jul 1;8(7):559–67.
8. Di Lazzaro V, Profice P, Pilato F, Dileone M, Oliviero A, Ziemann U. The effects of motor cortex rTMS on corticospinal descending activity. Clinical Neurophysiology. 2010;121(4):464–73.
9. Peinemann A, Reimer B, Löer C, Quartarone A, Münchau A, Conrad B, et al. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clinical Neurophysiology. 2004 Jul;115(7):1519–26.
10. Touge T, Gerschlager W, Brown P, Rothwell JC. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clinical Neurophysiology. 2001 Nov;112(11):2138–45.
11. Huang Y-Z, Rothwell JC, Chen R-S, Lu C-S, Chuang W-L. The theoretical model of theta burst form of repetitive transcranial magnetic stimulation. Clinical Neurophysiology. 2011 May;122(5):1011–8.
12. Perkinton MS, Sihra TS, Williams RJ. Ca2+-Permeable AMPA Receptors Induce Phosphorylation of cAMP Response Element-Binding Protein Through a Phosphatidylinositol 3-Kinase-Dependent Stimulation of the Mitogen-Activated Protein Kinase Signaling Cascade in Neurons. J. Neurosci. 1999 Jul 15;19(14):5861–74.
13. Beattie EC, Carroll RC, Yu X, Morishita W, Yasuda H, Zastrow M von, et al. Regulation of AMPA receptor endocytosis by a signaling mechanism shared with LTD. Nature Neuroscience. 2000 Dec 1;3(12):1291–300.
14. Earnshaw BA, Bressloff PC. Biophysical Model of AMPA Receptor Trafficking and Its Regulation During Long-Term Potentiation/Long-Term Depression. J. Neurosci. 2006 Nov 22;26(47):12362–73.
15. Collingridge GL, Isaac JTR, Wang YT. Receptor trafficking and synaptic plasticity. Nature Reviews Neuroscience. 2004 Dec 1;5(12):952–62.
16. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Reviews Neuroscience. 2007 Feb 1;8(2):101–13.
17. Gewaltig M-O, Diesmann M. NEST (NEural Simulation Tool). Scholarpedia. 2007;2(4):1430.
18. Esser SK, Hill SL, Tononi G. Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. Journal of Neurophysiology. 2005 01;94(1):622 –639.
19. Hill S, Tononi G. Modeling Sleep and Wakefulness in the Thalamocortical System. J Neurophysiol. 2005 Mar 1;93(3):1671–98.
20. Hempel CM, Hartman KH, Wang X-J, Turrigiano GG, Nelson SB. Multiple Forms of Short-Term Plasticity at Excitatory Synapses in Rat Medial Prefrontal Cortex. Journal of Neurophysiology. 2000 01;83(5):3031 –3041.
21. Rubin JE, Gerkin RC, Bi G-Q, Chow CC. Calcium Time Course as a Signal for Spike-Timing–Dependent Plasticity. Journal of Neurophysiology. 2005 01;93(5):2600 –2613.
22. Farley GR. Neural firing in ventrolateral thalamic nucleus during conditioned vocal behavior in cats. Experimental Brain Research. 1997;115(3):493–506.
23. Beloozerova IN, Sirota MG, Swadlow HA. Activity of Different Classes of Neurons of the Motor Cortex During Locomotion. J. Neurosci. 2003 Feb 1;23(3):1087–97.
24. Di Lazzaro V, Oliviero A, Meglio M, Cioni B, Tamburrini G, Tonali P, et al. Direct demonstration of the effect of lorazepam on the excitability of the human motor cortex. Clin Neurophysiol. 2000 May;111(5):794–9.
25. Ziemann U, Rothwell JC. I-waves in motor cortex. J Clin Neurophysiol. 2000 Jul;17(4):397–405.