簡易檢索 / 詳目顯示

研究生: 陳怡寬
Chen, Yi-Kuan
論文名稱: 新穎高效率天藍光至黃光熱活化延遲螢光發光體
Novel Highly Efficient Sky-Blue to Yellow Thermally Activated Delayed Fluorescence Emitters
指導教授: 鄭建鴻
Cheng, Chien-Hong
口試委員: 洪文誼
Hung, Wen-Yi
周鶴修
Chou, Ho-Hsiu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 264
中文關鍵詞: 熱活化延遲螢光高效率天藍光黃光非摻雜逆系統間跨越
外文關鍵詞: Thermally Activated Delayed Fluorescence Emitters, intramolecular charge transfer, reverse intersystem crossing, delayed fluorescence, neat film, external quantum efficiencies
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們設計並合成一系列含有吡啶-3,5-二氰基結構
    作為拉電子基的高效率熱活化延遲螢光發光體,名稱為CzdmPPC、
    tCzdmPPC、DBAZdmPPC、SPACdmPPC、DPAdmPPC。氰基的熱
    穩定性好,且可以抑制分子在激發態的結構緩解現象,與高能隙的吡
    啶搭配作為強度適中的拉電子基,藉由改變推電子基的種類,增加推
    電子基、橋基之間的二面角度以及分子內電荷轉移性質,在甲苯溶液
    中不同分子的光色為天藍光至黃綠光。經由量測摻雜在主體材料中的
    室溫螢光光譜與低溫磷光光譜,最低單重激發態和最低三重激發態的
    能量差ΔEST 分別為0.273、0.126、0.023、0.046、0.018 eV,分子
    CzdmPPC、tCzdmPPC 較大的ΔEST 不利於由最低三重激發態回到最
    低單重激發態的逆系統間跨越,其他分子的ΔEST 接近於室溫的環境
    能,顯示橋基的甲基可以縮短電子共振長度,並減低最高佔有分子軌
    域和最低未佔有分子軌域的重疊。我們製作多層有機發光二極體元件,
    分子CzdmPPC、tCzdmPPC、SPACdmPPC、DPAdmPPC 摻雜在
    mCPCN 的最大外部量子效率都高於15 %,對應到這些材料的高螢光
    量子效率和有效的逆系統間跨越。隨著不同分子ΔEST 的縮小,延遲
    螢光生命期縮短,外部量子效率大幅提升,同時減緩高亮度時的效率
    滾降。分子DPAdmPPC 具有極小的ΔEST 和100 %的螢光量子效率,延遲螢光生命期只有3.4 μs,摻雜在主體材料中的水平偶極矩為0.88,
    且元件擁有良好的載子平衡,最大外部量子效率高達41.2%,最大發
    光效率和功率效率為135.8 Cd/A 和142.2 lm/W,電激發光最大值為
    532 nm,CIE 色度座標為(0.33, 0.57)。因為分子DPAdmPPC 作為客
    發光體的優異元件表現,我們也將其應用於非摻雜發光體,剛性的結
    構避免濃度淬熄,最大外部量子效率、發光效率、功率效率分別可達
    21.3 %、65.9 Cd/A、82.8 lm/W,電激發光最大值紅位移至556 nm。
    這一系列分子的外部量子效率不僅遠超過螢光分子的理論值,與文獻
    中的熱活化延遲螢光發光體相比也相當突出,我們預期此種分子設計
    策略能應用於高效率熱活化延遲螢光材料。


    In this thesis, we designed and synthesized a series of highly efficient
    thermally activated delayed fluorescence (TADF) emitters which contain
    pyridine-3,5-dicarbonitrile as electron acceptor, named CzdmPPC,
    tCzdmPPC, DBAZdmPPC, SPACdmPPC, DPAdmPPC. In addition to
    high bond dissociation energies, carbonitrile moieties suppress geometry
    relaxation of molucule’s excited states. Dicarbonitrile group combines
    with pyridine, which contins high energy gap (Eg), gives moderate
    acceptor strength. By changing the moieties of electron donors, dihedral
    angles between donor and phenyl linker increases, and intramolecular
    charge transfer (ICT) characteristics could be enhanced. The maximum
    photoluminance (PL) wavelength of different molecules in toluene varies
    from 482 nm to 544 nm. By measuring fluorescence at room temperature
    and phosphorescence at low temperature, the energy splitting between S1
    and T1, namely ΔEST, is 0.273, 0.126, 0.023, 0.046, 0.018 eV. Compound
    CzdmPPC, tCzdmPPC have larger ΔESTs, which is disadvantageous to
    reverse intersystem crossing (RISC) process from T1 to S1. Other
    molecules have ΔESTs close to thermal energy at room temperature,
    which indicates the xylene bridge could shorten the electron conjugation and efficient RISC of these materials, the
    fabricated devices with CzdmPPC, tCzdmPPC, SPACdmPPC,
    DPAdmPPC doped in mCPCN show maximum external quantum
    efficiencies (EQEs) higher than 15 %. EQE significantly increases as Δ
    EST and delayed fluorescence (DF) lifetime decrease, which also results in
    reduction in efficiency roll-off at high luminance. DPAdmPPC has small
    ΔEST , 100 % PLQY and delayed fluorescence lifetime of 3.4 μs. The
    horizontal dipole ratio is 0.88 doped in mCPCN, and the device shows the
    maximum EQE, curent efficiency (C.E.), power efficiency (P.E.) of 41.2
    %, 135.8 Cd/A, 142.2 lm/W. Due to the extraodinary device performance
    of DPAdmPPC, we also apply it as non-doped emitter. The rigid structure
    avoids concentration quenching in neat film, and it shows maximum EQE,
    C.E., P.E. of 21.3 %, 65.9 Cd/A, 82.8 lm/W. The series of molecules’
    efficiencies not only surprass the theorical value of fluorescent materials,
    but also show one of the best performance among reported TADF emitter.
    We expect that the molecular design strategies would be applied to highly
    efficient TADF materials.

    摘要................................................................................................................................ I Abstract ........................................................................................................................III 目錄..............................................................................................................................IV 圖目錄........................................................................................................................ VII 表目錄....................................................................................................................XVIII 第一章緒論..................................................................................................................1 第一節有機電致發光發展歷史..........................................................................2 第二節螢光與磷光..............................................................................................7 第三節有機發光二極體之基本結構..................................................................9 第四節主客體材料摻雜系統............................................................................12 第五節OLED 元件之發光效率........................................................................16 第六節熱活化延遲螢光....................................................................................19 第二章設計與合成含氰基和吡啶的熱活化延遲螢光分子及其物理性質............33 第一節研究動機與分子設計............................................................................34 第二節吡啶-3,5-二氰基分子的合成................................................................41 第三節 密度泛函理論計算及單晶繞射結果....................................................47 第四節材料分子的吸收光譜與放光光譜及最高佔有分子軌域....................56 第五節材料分子的螢光光譜與磷光光譜及發光量子效率............................78 第六節材料分子的熱物理性質........................................................................97 第七節延遲螢光生命期量測..........................................................................100 第三章應用於電激發光元件表現及結果討論......................................................106 第一節元件結構最佳化..................................................................................107 第二節由天藍光至黃光熱活化延遲螢光發光體..........................................134 第三節高效率有機發光二極體應用及結果討論..........................................141 實驗部分....................................................................................................................195 附錄一量測原理、藥品、儀器與元件製作..........................................................214 附錄二核磁共振光譜資料......................................................................................221 附錄三X-ray 單晶繞射結構...................................................................................254

    [1] H.-C. Yeh, W.-C. Wu, C.-T. Chen, Chemical Communications 2003,
    404.
    [2] 陳金鑫, 黃孝文, OLED 夢幻顯示器.OLED 材料與元件, 2009,
    240.
    [3] M. Pope, H. P. Kallmann, P. Magnante, The Journal of Chemical
    Physics 1963, 38, 2042.
    [4] C. W. Tang, S. A. VanSlyke, Applied Physics Letters 1987, 51, 913.
    [5] C. Zhang, D. Braun, A. J. Heeger, Journal of Applied Physics 1993, 73,
    5177.
    [6] Y. Karzazi, J. Cornil, J. L. Bredas, J Am Chem Soc 2001, 123, 10076.
    [7] A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chemistry of
    Materials 2004, 16, 4556.
    [8] S. Hung, C. H. Chen, Mater. Sci. Eng., R2002, 39, 143.
    [9] S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-
    K. Moon, W. Brütting, J.-J. Kim, Advanced Functional Materials 2013,
    23, 3896.
    [10] C. W. Tang, S. A. VanSlyke, C. H. Chen, Journal of Applied Physics
    1989, 65, 3610.
    [11] R. M. Clegg , Curr. Opin. Biotechnol. 1995, 6, 103.
    [12] D. F. O’Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, Applied
    Physics Letters 1999, 74, 442.
    [13]T. Förster, Discuss. Faraday Soc. 1959, 27, 7.
    [14] K. An, J. J. Childs, R. R. Dasari, M. S. Feld, Phys. Rev. Lett. 1994,
    73, 3375.
    [15] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest,
    Phys.Rev. B 1999, 60, 14422.
    [16] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Journal of
    Applied Physics 2001, 90, 5048.
    [17] A. Endo, K. Sato, K. Yoshimura, T. Kai, A. Kawada, H. Miyazaki, C.
    Adachi, Applied Physics Letters 2011, 98.
    [18] C. Adachi, Japanese Journal of Applied Physics 2014, 53.
    [19] F. B. Dias, T. J. Penfold, A. P. Monkman, Methods Appl Fluoresc
    2017, 5, 012001.
    [20] Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang,
    W. Huang, Adv Mater 2014, 26, 7931.
    [21] M. Y. Wong, E. Zysman-Colman, Adv Mater 2017, 29.
    [22] Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem Soc Rev 2017, 46, 915.
    [23] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature
    2012, 492, 234.
    [24] Y. Im, M. Kim, Y. J. Cho, J.-A. Seo, K. S. Yook, J. Y. Lee, Chemistry
    of Materials 2017, 29, 1946.
    [25] T. L. Wu, S. H. Lo, Y. C. Chang, M. J. Huang, C. H. Cheng, ACS
    Appl Mater Interfaces 2019, 11, 10768.
    [26] T.-L. Wu, M.-J. Huang, C.-C. Lin, P.-Y. Huang, T.-Y. Chou, R.-W.
    Chen-Cheng, H.-W. Lin, R.-S. Liu, C.-H. Cheng, Nature Photonics
    2018, 12, 235.
    [27] K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K.
    Tanaka, H. Kaji, C. Adachi, The Journal of Physical Chemistry C
    2015, 119, 26283.
    [28] S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N.
    Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H.
    Miyazaki, C. Adachi, Nat Mater 2015, 14, 330.
    [29] D. H. Ahn, S. W. Kim, H. Lee, I. J. Ko, D. Karthik, J. Y. Lee, J. H.
    Kwon, Nature Photonics 2019, 13, 540.
    [30] T. Hatakeyama, K. Shiren, K. Nakajima, S. Nomura, S. Nakatsuka, K. Kinoshita, J. Ni, Y. Ono, T. Ikuta, Adv Mater 2016, 28, 2777.
    [31] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y.
    Sasada, M. Yanai, T. Hatakeyama, Nature Photonics 2019.
    [32] P. Rajamalli, N. Senthilkumar, P. Y. Huang, C. C. Ren-Wu, H. W.
    Lin, C. H. Cheng, J Am Chem Soc 2017, 139, 10948.
    [33] X. Cao, D. Zhang, S. Zhang, Y. Tao, W. Huang, Journal of Materials
    Chemistry C 2017, 5, 7699.
    [34] H.-J. Park, S. H. Han, J. Y. Lee, H. Han, E.-G. Kim, Chemistry of
    Materials 2018, 30, 3215.
    [35] K.-C. Pan, S.-W. Li, Y.-Y. Ho, Y.-J. Shiu, W.-L. Tsai, M. Jiao, W.-K.
    Lee, C.-C. Wu, C.-L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C.
    Hu, C.-C. Chen, M.-T. Lee, Advanced Functional Materials 2016, 26,
    7560.
    [36] Q. Zhang, J. Li, K. Shizu, S. Huang, S. Hirata, H. Miyazaki, C. Adachi,
    J Am Chem Soc 2012, 134, 14706.
    [37] S. Wu, M. Aonuma, Q. Zhang, S. Huang, T. Nakagawa, K. Kuwabara,
    C. Adachi, J. Mater. Chem. C 2014, 2, 421.
    [38] S. Y. Lee, T. Yasuda, Y. S. Yang, Q. Zhang, C. Adachi, Angew Chem Int
    Ed Engl 2014, 53, 6402.
    [39] Y. Kitamoto, T. Namikawa, D. Ikemizu, Y. Miyata, T. Suzuki, H. Kita,
    T. Sato, S. Oi, Journal of Materials Chemistry C 2015, 3, 9122.
    [40] Y. Kondo, K. Yoshiura, S. Kitera, H. Nishi, S. Oda, H. Gotoh, Y. Sasada,
    M. Yanai, T. Hatakeyama, Nature Photonics 2019.
    [41] M. Numata, T. Yasuda, C. Adachi, Chem Commun (Camb) 2015, 51,
    9443.
    [42] Y. Kitamoto, T. Namikawa, T. Suzuki, Y. Miyata, H. Kita, T. Sato, S.
    Oi, Tetrahedron Letters 2016, 57, 4914.
    [43] W. Liu, C. J. Zheng, K. Wang, Z. Chen, D. Y. Chen, F. Li, X. M. Ou,
    Y. P. Dong, X. H. Zhang, ACS Appl Mater Interfaces 2015, 7, 18930.
    [44] Z. Chen, Z. Wu, F. Ni, C. Zhong, W. Zeng, D. Wei, K. An, D. Ma, C.
    Yang, Journal of Materials Chemistry C 2018, 6, 6543.
    [45] P. Rajamalli, N. Senthilkumar, P. Gandeepan, P. Y. Huang, M. J. Huang,
    C. Z. Ren-Wu, C. Y. Yang, M. J. Chiu, L. K. Chu, H. W. Lin, C. H.
    Cheng, J Am Chem Soc 2016, 138, 628.
    [46] P. Rajamalli, N. Senthilkumar, P. Gandeepan, C.-Z. Ren-Wu, H.-W.
    Lin, C.-H. Cheng, Journal of Materials Chemistry C 2016, 4, 900.
    [47] J. Jayakumar, T. L. Wu, M. J. Huang, P. Y. Huang, T. Y. Chou, H. W.
    Lin, C. H. Cheng, ACS Appl Mater Interfaces 2019, 11, 21042.
    [48] Z. Chen, F. Ni, Z. Wu, Y. Hou, C. Zhong, M. Huang, G. Xie, D. Ma,
    C. Yang, J Phys Chem Lett 2019, 10, 2669.
    [49] I. S. Park, H. Komiyama, T. Yasuda, Chem Sci 2017, 8, 953.
    [50]H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
    [51] W. Huang, M. Einzinger, A. Maurano, T. Zhu, J. Tiepelt, C. Yu, H. S.
    Chae, T. Van Voorhis, M. A. Baldo, S. L. Buchwald, Advanced Optical
    Materials 2019.
    [52] P. Stachelek, J. S. Ward, P. L. Dos Santos, A. Danos, M. Colella, N.
    Haase, S. J. Raynes, A. S. Batsanov, M. R. Bryce, A. P. Monkman,
    ACS Appl Mater Interfaces 2019, 11, 27125.
    [53] S. J. Woo, Y. Kim, S. K. Kwon, Y. H. Kim, J. J. Kim, ACS Appl Mater
    Interfaces 2019, 11, 7199.
    [54] L. S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi,
    Angew Chem Int Ed Engl 2017, 56, 1571.
    [55] S.-J. Woo, Y. Kim, M.-J. Kim, J. Y. Baek, S.-K. Kwon, Y.-H. Kim, J.-
    J. Kim, Chemistry of Materials 2018, 30, 857.
    [56] T. A. Lin, T. Chatterjee, W. L. Tsai, W. K. Lee, M. J. Wu, M. Jiao, K.
    C. Pan, C.L.Yi, C. L. Chung, K. T. Wong, C. C. Wu, Adv Mater 2016,
    28, 6976.
    [57] M. Orio, D. A. Pantazis, F. Neese, Photosynth Res 2009, 102, 443.
    [58] V. Thangaraji, P. Rajamalli, J. Jayakumar, M. J. Huang, Y. W. Chen,
    C. H. Cheng, ACS Appl Mater Interfaces 2019, 11, 17128.
    [59] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura, T. Yasuda,
    Advanced Optical Materials 2018, 6.
    [60] C. Li, R. Duan, B. Liang, G. Han, S. Wang, K. Ye, Y. Liu, Y. Yi, Y.
    Wang, Angew Chem Int Ed Engl 2017, 56, 11525.
    [61] Y. Kitamoto, T. Namikawa, T. Suzuki, Y. Miyata, H. Kita, T. Sato, S.
    Oi, Tetrahedron Letters 2016, 57, 4914.
    [62] Wu, T.-L.; Huang, M.-J.; Lin, C.-C.; Huang, P.-Y.; Chou, T.-Y.; Chen-
    Cheng, R.-W.; Lin, H.-W.; Liu, R.-S.; Cheng, C.-H. Nat. Photonics
    2018, 12, 235.
    [63] P. L. Santos, J. S. Ward, P. Data, A. S. Batsanov, M. R. Bryce, F. B.
    Dias, A. P. Monkman, Journal of Materials Chemistry C 2016, 4,
    3815.
    [64] M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P.
    Monkman, Nat Commun 2016, 7, 13680.
    [65] P. L. dos Santos, M. K. Etherington, A. P. Monkman, Journal of
    Materials Chemistry C 2018, 6, 4842.
    [66] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Nature
    Photonics 2014, 8, 326.
    [67] K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji, C. Adachi, The Journal of Physical Chemistry C
    2015, 119, 26283.
    [68] Im, Y.; Kim, M.; Cho, Y. J.; Seo, J.-A.; Yook, K. S.; Lee, J. Y.
    Chem.Mater.2017,29, 1946.
    [69] Q. Zhang, H. Kuwabara, W. J. Potscavage, Jr., S. Huang, Y. Hatae, T.
    Shibata, C. Adachi, J Am Chem Soc 2014, 136, 18070.
    [70] I. S. Park, K. Matsuo, N. Aizawa, T. Yasuda, Advanced Functional
    Materials 2018, 28.
    [71] C. Li, C. Duan, C. Han, H. Xu, Adv Mater 2018, 30.
    [72] L. Gan, K. Gao, X. Cai, D. Chen, S. J. Su, J Phys Chem Lett 2018, 9,
    4725.
    [73] C. H. Ryoo, I. Cho, J. Han, J. H. Yang, J. E. Kwon, S. Kim, H. Jeong,
    C. Lee, S. Y. Park, ACS Appl Mater Interfaces 2017, 9, 41413.
    [74] J. Jayakumar, T. L. Wu, M. J. Huang, P. Y. Huang, T. Y. Chou, H. W.
    Lin, C. H. Cheng, ACS Appl Mater Interfaces 2019, 11, 21042.
    [75] K.-C. Pan, S.-W. Li, Y.-Y. Ho, Y.-J. Shiu, W.-L. Tsai, M. Jiao, W.-K.
    Lee, C.-C. Wu, C.-L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-C.
    Hu, C.-C. Chen, M.-T. Lee, Advanced Functional Materials 2016, 26,
    7560.
    [76] C. Mayr, T. D. Schmidt, W. Brütting, Applied Physics Letters 2014, 105.
    [77] C.-C. Wu, K.-T. Wong, T. Chatterjee, T.-A. Lin, K.-C. Pan, Y.-H. Huang,
    W.-K. Lee, Journal of Photonics for Energy 2018, 8.
    [78] J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Adv Mater 2017,
    29.
    [79] H. S. Kim, S.-R. Park, M. C. Suh, The Journal of Physical Chemistry
    C 2017, 121, 13986.
    [80] D. Tanaka, T. Takeda, T. Chiba, S. Watanabe, J. Kido, Chemistry Letters
    2007, 36, 262.
    [81] J.-H. Jou, S. Kumar, A. Agrawal, T.-H. Li, S. Sahoo, Journal of
    Materials Chemistry C 2015, 3, 2974.
    [82] D. H. Ahn, H. Lee, S. W. Kim, D. Karthik, J. Lee, H. Jeong, J. Y. Lee, J. H. Kwon, ACS Appl Mater Interfaces 2019, 11, 14909.
    [83] C. S. Oh, D. S. Pereira, S. H. Han, H. J. Park, H. F. Higginbotham, A.
    P. Monkman, J. Y. Lee, ACS Appl Mater Interfaces 2018, 10, 35420.
    [84] C. Murawski, K. Leo, M. C. Gather, Adv Mater 2013, 25, 6801.
    [85] Q. Yue, W. Li, F. Kong, K. Li, Advances in Materials Science and
    Engineering 2012, 1.
    [86] D. Yokoyama, Journal of Materials Chemistry 2011, 21.
    [87] C. Mayr, S. Y. Lee, T. D. Schmidt, T. Yasuda, C. Adachi, W. Brütting,
    Advanced Functional Materials 2014, 24, 5232.
    [88] T. Komino, H. Tanaka, C. Adachi, Chemistry of Materials 2014, 26,
    3665.
    [89] T. Komino, H. Nomura, T. Koyanagi, C. Adachi, Chemistry of
    Materials 2013, 25, 3038.
    [90] K.-C. Pan, S.-W. Li, Y.-Y. Ho, Y.-J. Shiu, W.-L. Tsai, M. Jiao, W.-K.
    Lee, C.-C. Wu, C.-L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H.-
    C. Hu, C.-C. Chen, M.-T. Lee, Advanced Functional Materials 2016,
    26, 7560.
    [91] M. Liu, R. Komatsu, X. Cai, K. Hotta, S. Sato, K. Liu, D. Chen, Y.
    Kato, H. Sasabe, S. Ohisa, Y. Suzuri, D. Yokoyama, S.-J. Su, J. Kido, Chemistry of Materials 2017, 29, 8630.
    [92] P. Ganesan, D.-G. Chen, J.-L. Liao, W.-C. Li, Y.-N. Lai, D. Luo, C.-
    H. Chang, C.-L. Ko, W.-Y. Hung, S.-W. Liu, G.-H. Lee, P.-T. Chou, Y.
    Chi, Journal of Materials Chemistry C 2018, 6, 10088.
    [93] K. H. Kim, C. K. Moon, J. H. Lee, S. Y. Kim, J. J. Kim, Adv Mater
    2014, 26, 3844.
    [94] K. H. Kim, S. Lee, C. K. Moon, S. Y. Kim, Y. S. Park, J. H. Lee, J.
    Woo Lee, J. Huh, Y. You, J. J. Kim, Nat Commun 2014, 5, 4769.
    [95] S.-Y. Kim, W.-I. Jeong, C. Mayr, Y.-S. Park, K.-H. Kim, J.-H. Lee, C.-
    K. Moon, W. Brütting, J.-J. Kim, Advanced Functional Materials
    2013, 23, 3896.
    [96] H. Lee, H. Ahn, C. Lee, Journal of Information Display 2011, 12, 219.
    [97] 黃佩芸,國立清華大學化學系碩士論文,中華民國一百零七年三

    [98] J. Guo, X.-L. Li, H. Nie, W. Luo, S. Gan, S. Hu, R. Hu, A. Qin, Z.
    Zhao, S.-J. Su, B. Z. Tang, Advanced Functional Materials 2017, 27.
    [99] J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, B. Z. Tang, Chem Rev
    2015, 115, 11718.
    [100] J. Mei, Y. Hong, J. W. Lam, A. Qin, Y. Tang, B. Z. Tang, Adv Mater 2014, 26, 5429.
    [101] C. Li, R. Duan, B. Liang, G. Han, S. Wang, K. Ye, Y. Liu, Y. Yi, Y.
    Wang, Angew Chem Int Ed Engl 2017, 56, 11525.
    [102] H. Liu, J. Zeng, J. Guo, H. Nie, Z. Zhao, B. Z. Tang, Angew Chem Int
    Ed Engl 2018, 57, 9290.
    [103] G. Meng, X. Chen, X. Wang, N. Wang, T. Peng, S. Wang, Advanced
    Optical Materials 2019, 7.
    [104] Z. Xie, C. Chen, S. Xu, J. Li, Y. Zhang, S. Liu, J. Xu, Z. Chi, Angew
    Chem Int Ed Engl 2015, 54, 7181.

    QR CODE