研究生: |
許嘉良 Chia Liang Hsu |
---|---|
論文名稱: |
流體自組裝技術微控機制之研究 Study of Control Mechanism for Fluidic Self-Assembly |
指導教授: |
葉哲良
J. Andrew Yeh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 自組裝技術 、流體自組裝 、自組裝單分子膜 、表面張力 |
外文關鍵詞: | Self-assembly, fluidic self-assembly, se;f-assembly monolayer, surface tension |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子構裝領域存在許多Pick & Place的機械動作,當元件尺寸持續縮小,這些重複的動作除了造就各種電子組件的高封裝成本之外,也衍生出許多可行性與信賴性的問題。
利用元件在微尺度相對關鍵作用力的分析,可以預測在mm~nm等級的元件將需要應用有別於傳統Pick & Place的定位技術,自組裝(Self-Assembly)將會是一種確實可行的方案,而其中流體自組裝(Fluidic Self-Assembly;FSA)更是研究最為完整且深具產業應用價值,但FSA的作用機制具有一定程度的困難,包括作用機制的穩定性與再現性及後製程的匹配程度。
我們藉由元件與承載基材界面處理的最佳化及表面形貌設計作為輔助,可有效改善FSA定位穩定性與後製程的匹配性。
The Pick and Place technology is very popular in the electronics packaging. However, as the component dimension shrinks down dramatically, not only the packaging cost will be sky high and it also creates some problems in the process feasibility and component reliability.
We analyze the change of dominant forces when component scale is in the range of nano-meter to mini-meter. It indicates that different packaging methods must be developed beside the costly pick and place process. Self-assembly is the most promising solution, especially the fluidic self-assembly (FSA) technique which is well studied and have high volume throughput in the electronics packaging. However, the design or process of control mechanism has their own difficulties such as the stability and reproducibility of control mechanism and the compatibility of process with post process.
Buy using the DOE technique for FSA process, we optimize the surface treatment of devices and substrates and couple with the design of surface feature. These improve stability of FSA and easy to integrate with the post process.
[1] M.B.Cohn, K.F.Bohringer, J.M.Noworolski, A.Singh, C.G.Keller, K.Y.Goldberg, and R.T.Howe, “Microassembly technologies for MEMS,” in proc. SPIE Micromaching and Microfabrication, Santa Clara, CA, Sept.20-22, pp.2-16, 1998.
[2]R. S. Fearing, “Survey of sticking effects for micro-parts,” in Proc.IEEE RSJ Int. Conf. On Robotics and Intelligent Systems (IROS), Pittsburg, PA, pp. 212 –217, 1995.
[3]R.R.A.Syms and E.M.Yeatman, “Self-assembly of three dimensional microstructures using rotation by surface tension force,” Electonics Letters, 15th, Vol.29, No.8, April, 1993.
[4]A.S.Holmes and S.M.Saidam, “Sacrificial layer process with laser-driven release for batch assembly operations,” Journal of Microelectromechanical Systems, Vol. 7, No. 4, December,1998.
[5] K.F. Harsh, R.S. Irwin and Y.C. Lee, “Solder self-assembly for MEMS,” in proc. of the 4th International Instrumentation Symposium,Reno, Nevada, 3–7, pp. 256–261, May 1998.
[6] R.R.A. Syms “Equilibrium of hinged and hingeless structures rotated using surface tension forces,” Journal of Microelectromechanical Systems,, Vol.4 , 177-184, 1995
[7]E. Quévy, ” 3-D self-assembling and actuation of electrostatic microstructures” IEEE Transactions on Electron Devices, Vol. 48, No. 8, AUGUST 2001
[8]E.W.H. Jager, E. Smela and O. Inganas, ”Microfabricating onjugated polymer actuators,” Science Vol.290, No.5496, pp.1540-1545, 2000.
[9]T.D.Clark, M. Boncheva, J. M. German, M. Weck and G. M. Whitesides, “Template-directed self-assembly of 10-(micro)m-sized hexagonal plates,” Journal of American Chemistry Socity, Vol. No.124, pp.18–19, 2002.
[10]D.H.Gracias, V.Kavthekar, J.C.Love, K.E.Paul and G.M.Whitesides, “Self-organization processes in the chemistry of materials,” Advance Material Vol.14, pp.235–238, 2002.
[11]R.R.A. Syms, E.M. Yeatman, "Self-assembly of fully three-dimensional microstructures using rotation by surface tension forces," Electronics Letters, Vol.29, pp.662-664, 1993.
[12]H.O.Jacobs , A.R.Tao, A.Schwartz, D.H.Gracias, and G.M.Whitesides, "Fabrication of a cylindrical display by patterned assembly," Science, Vol.296, No.323, 2002.
[13]H.J.J.Yeh and J.S.Smith, “Fluidic self-assembly of silicon microstructures,” IEEE Photon Technology Letters, Vol. 6, pp.706–708, 1994.
[14]Alien Technology, Morgan Hill, CA, http://www.alientechnology.com/technology/overview.html
[15]M.Boncheva, D.A.Bruzewicz, and G.M.Whitesides, “Millimeter-scale self-assembly and its application,” Pure Application Chemistry, Vol.75, No.5, pp.621-630, 2003
[16]G.M.Whitesides and B.Grzybowski, “Self-assembly at all scales,” Science, Vol.295,pp.2418-2421,2002
[17] K.Harsh and Y.C.Lee, ”Modeling for solder self-assembled MEMS,” proc. of SPIE Micromaching and Microfabrication, San Jose, January 24-30, Vol. 3289, No. 3289-26, 1998.
[18] A.Terfort, N.Bowden, and G.M.Whitesides, “Three-dimensional self-assembly of millimeter-scale components,” Nature, Vol. 386, pp.162–164, 1997.
[19] T.L.Breen, J.Tien, S.R.J.Oliver, T.Hadzic, and G.M.Whitesides,“Design and self-assembly of open, regular, 3D mesostructures,” Science, vol. 284, pp. 948–951, 1999.
[20]M. B. Cohn, “Assembly techniques for microelectromechanical systems,”Ph.D. dissertation, Univ. of California at Berkeley, 1997.
[21]K.F.Böhringer, K.Goldberg, M.Cohn, R.T.Howe, and A.P.Pisano,“Parallel microassembly with electrostatic force fields,” in Proc. SPIE Micromaching and Microfabrication, Santa Clara, CA, Sept.20-22, 1998.
[22]C.G.Fonstad, ”Magnetically-assisted statistical assembly a new heterogeneous integration technique,” Singapore-MIT Alliance symposium in January 2002.
[23]B.VIKRAMADITYA1, B.J.NELSON1, G.E.YANG1, and E.T.ENIKOV, “Micro-assembly of hybrid magnetic MEMS,” Journal of Microelectromechanical Systems, Vol. 1, No. 2, pp. 99–116, 2001
[24]K.Saitou and M.J.Jakiela, “DESIGN of a self-closing compliant “mouse trap” for micro assembly,” proc. of IMECE’98,November 17-22, Atlanta, Georgia, USA, 1996
[25]R.Prasad, K.F. Böhringer, N.C.MacDonald, ” Design, fabrication, and characterization of single crystal silicon latching snap fasteners for micro assembly,” proc. of ASME, International Mechanical Engineer Congress and Exposition, San Francisco, CA, Nov., 1995.
[26]U.Srinivasan, M.A.Helmbrecht, C.Rembe, R.S.Muller, and R.T.Howe, “Fluidic self-assembly of micromirrors onto microactuators using capillary forces”, IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, No. 1, pp. 4-11, JANUARY/FEBRUARY, 2002.
[27]U.Srinivasan, D.Liepmann, and R.T.Howe,“Microstructure to substrate self-assembly using capillary forces”, Journal of Microelectromechanical Systems, Vol. 10, No. 1, pp. 17-24, MARCH 2001.
[28] J.Lienemann, A.Greiner, J.G.Korvink, “Modeling, simulation, and experimentation of a promising new packaging technology : parallel fluidic self-assembly of microdevices,” Sensors Update, Vol.13, pp.3-43, December, 2003.
[29]X.Xiong, “Controlled multibatch self-assembly of microdevices” Journal of Microelectromechanical Systems, Vol. 12, No. 2, APRIL 2003.
[30]X.Xiong, Y.Hanein, J.Fang, D.T.Schwartz, K.F. Böhringer, “Multi-batch self-assembly for micro-system integration,” 3rd International Workshop on Microfactories, Minneapolis, MN, 2002.
[31]X.Xiong, “Controlled multi-batch self-assembly of micro devices,” Ph.D. dissertation, Univ. of Washington, 2004.