研究生: |
吳國傑 |
---|---|
論文名稱: |
設限分量迴歸估計 Penalized Estimation for Quantile Regression |
指導教授: |
徐南蓉
Hsu, Nan-Jung |
口試委員: |
徐南蓉
黃信誠 蔡恆修 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 統計學研究所 Institute of Statistics |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 42 |
中文關鍵詞: | 設計分量迴歸 、參數估計方法 、分量迴歸 、設限項 |
外文關鍵詞: | Quantile regression, Composite quantile regression, Penalized qunatile regression |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
分量迴歸(Quantile regression, QR)透過中位數來描述變數間的關聯性,其後延伸到任意不同的分量值,皆可以使用分量迴歸來建立模型描述變數間的關聯性,因此分量迴歸可以應用到各式各樣的資料和領域上。Zou and Yuan (2008)提出在不同分量下,彼此之間除了截距項以外的迴歸係數假設皆相同,我們可以將所有分量下的損失函數加總作參數估計,這個新的分量迴歸估計方法稱為Composite quantile regression(CQR)。由於使用QR或CQR參數估計前需先檢定資料傾向哪種估計方法的前提假設,需要二階段的動作才能得到答案,況且不是CQR就一定得使用QR來做參數估計的話,未免有些沒效率;因此在考慮同時進行選定模型和參數估計的想法下,我們嘗試在不同分量下,將所有分量迴歸的損失函數加總後,再以加入設限函數的方式,建構一個新的分量迴歸係數估計的方法,稱之為設限分量迴歸(Penalized quantile regression),使得在參數估計的過程中可以同時進行選定模型的動作,其中PQR估計量的漸近分佈和QR的漸近分佈會相同;而在模擬分析中也可以發現,在PQR、QR、CQR的參數估計量比較之下,PQR皆可以有不錯的表現。
Quantile regression (QR) describes the relationship between the response variable and the exploratory variables through some specific quantiles, which has been applied to a wide range of data and different fields. Under the linear model assumption, Zou and Yuan (2008) proposed the composite quantile regression (CQR) to incorporate several quantiles at a time in the estimation function. In theory, CQR has better estimation precision when the linear model assumption holds, but it is not adequate and biased when the assumption is wrong. Without the linear model assumption, this thesis suggest a penalized quantile regression (PQR) method which implements either QR or CQR according to the empirical data property, by including a specific grouped lasso regularization term on the regression parameters in the estimation function. Simulation results show that PQR has good estimation performance over the QR and CQR under various situations.
1. Friedman, J., Hastie, T., Hofling, H., and Tibshirani, R. (2007). Pathwise coordinate optimation. The Annals of Applied Statistics. 2 302-332
2. Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 33-50.
3. Koenker, R. (2005). Quantile Regression. Cambridge University Press.
4. Koenker, R. and Xiao, Z. (2006). Quantile autoregression. Journal of the American Statistical Association 101, 980-990.
5. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
6. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J. and Knight, K. (2005). Sparsity and smoothness via the fused lasso. J. Roy. Statist. Soc. Ser. B 67 91-108. MR2136641
7. Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. J. Roy. Statist. Soc. Ser. B 67 49-67. MR2212574
8. Zou, H. and Yuan, M.(2008). Composite quantile regression and the oracle model selection theory. Annals of Statistics 36, 1108-1126.
9. 羅驛(2010),加權分量迴歸,國立清華大學統計研究所碩士論文