研究生: |
鄭嘉璿 Cheng, Chia Hsuan |
---|---|
論文名稱: |
The Formation of Supermassive Binary Black Holes in Elliptical Galaxies 橢圓星系中超大質量雙黑洞的形成 |
指導教授: |
江瑛貴
Jiang, Ing Guey |
口試委員: |
葉麗琴
陳林文 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 雙黑洞 |
外文關鍵詞: | dynamical friction |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這項研究工作中,我們想知道兩顆超大質量黑洞在星系中的演化情形,以及他們是否能在宇宙年齡內形成重力束縛態的雙黑洞系統,由於在此期間黑洞的演化主要受到dynamical friction的影響,所以我們也會探討dynamical friction中的變數以及其他不同的條件如黑洞質量及其初始位置等,我們利用電腦模擬黑洞在星系中的運動並將結果作圖,我們的結果顯示在Hernquist model的星系中黑洞的演化會較其在Plummer model中迅速,在使系統成為束縛態的臨界黑洞質量方面,前者的質量約為後者的十分之一,因此在Hernquist model下較容易形成束縛態的雙黑洞系統。
We study the evolution of two supermassive black holes in the galaxy. We investigate whether two black holes can form a bound binary system within the age of the universe. Since the dynamical friction is the major physical process to determine the early stage of the formation of binary supermassive black holes, we also investigate its variables and other parameters such as the mass and the initial positions of the black holes. We use the simulation to study the behavior of two black holes in the galaxy. The results show that the evolution in the Hernquist model is faster than the one in the Plummer model. The former’s critical black hole mass to become gravitational bound is roughly one tenth of the latter’s. Hence it is easier for the black holes to become a bound binary in the Hernquist model.
Begelman M.C., Blandford R.D., Rees M.J., 1980, Nature, 287, 307
Binney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press,
Binney J., Tremaine S., 2008, Galactic Dynamics 2ed. Princeton Univ. Press,
Burkert A., 1994, RvMA, 7, 191
Chandrasekhar S., 1943, ApJ, 97, 255
Dehnen W., 1993, MNRAS, 265, 250
Haehnelt M.G., 1994, MNRAS, 269, 199
Hernquist L., 1990, ApJ, 356, 359
Jaffe W., 1983, MNRAS, 202, 995
Magorrian J. et al., 1998, AJ, 115, 2285
Merritt D. et al, 2006, AJ, 132, 2685
Navarro J.F., Frenk C.S., White S.D.M., 1995, MNRAS, 275, 720
Plummer H.C., 1911, MNRAS, 71, 460
Quinlan G.D., 1996, New Astron., 1, 35
Vasiliev E et al, 2015, ApJ, 810, 49
Young P., 2014, The leapfrog method and other symplectic algorithms for inte-
grating Newtons laws of motion, Notes for Computational Physics, University of
California, Santa Cruz
Yu Q., 2002, MNRAS, 331,935
Yu Q., Lu Y., 2001, A&A, 377, 17