簡易檢索 / 詳目顯示

研究生: 劉弈玄
Liu, Yi-Hsuan
論文名稱: 大尺度強關聯電子體系中的數值模擬
Large-scale Numerical Simulations in Strongly Correlated Electronic Systems
指導教授: 李定國
Lee, Ting-Kuo
口試委員: 邱雅萍
Chiu, Ya-Ping
陳嘉維
Chern, Gia-Wei
牟中瑜
Mou, Chung-Yu
黃一平
Huang, Yi-Ping
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 49
中文關鍵詞: 高溫超導銅氧化物超導t − J 模型重整化平均場理論渦漩
外文關鍵詞: Kernel Polynomial Method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文主要在探討大尺度的強關聯電子系統,更準確地說,我們使用
    t − t′ − J 模型來模擬高溫超導銅氧化物中銅氧平面的微觀行為。在這個工
    作中,我們使用Gutzwiller Approximation(GWA) 以及重整化平均場論方法
    (Renormalized mean field theory) 來近似地計算t − J 漢米爾頓量。
    一般而言,mean-field 在計算漢米爾頓的本徵波函數時使用的是精確數
    值對角化,本篇論文採用了Kernal Polynomial Method(KPM) 來近似地計算
    譜權重(spectral weigth),進而得到密度矩陣(density matrix)。其次,本項工
    作採用了CPU/GPU 平行計算的方法來加速。使用RMFT+KPM 方法並且加
    上GPU 的加速,進而在短時間內計算出很大尺度的強關聯系統系統。
    銅氧化物超導(cuprate) 中一直以來存在一個謎團,理論計算的純d-波超
    導渦漩電子態應存在一個零偏壓電導峰(zero bias conductance peak,ZBCP),
    然而,大部分的Bi-系銅氧化物卻沒有相關的實驗報導,直到了2021 年
    Renner 等人[1] 在過摻雜(overdoped) 的Bi-系銅氧化物樣品,並且極低的磁
    場下找到了零篇壓電導峰。這引起了人們重新對銅氧化物渦漩態的關注。
    此外,在2016 年的nat. comm. [3] 與2019 年的science 文章[2] 中,報
    導了四個晶格週期與八個晶格週期的電荷密度波( charge density wave),這
    表明了配對密度波(pair density wave) 的存在,然而目前卻尚未有微觀的理
    論模型來解釋這一結果。
    在這篇論文中,我們會使用重整化平均場論方法來得到渦漩態,並且計
    算它的電子能譜。利用前述KPM 方法,可以計算磁場低至此約3 特斯拉,
    過者說96 × 96 的晶格大小系統,並且做了完整的磁場與電洞摻雜探討。另
    外,我們也會展示雙向的電荷密度波與渦旋共存態,並且計算它的形狀因子(form factor) 並與實驗結果比較。


    This thesis aims to solve the problem on the large scale of strongly correlated
    electron systems. We simulate the physics for the copper-oxide plain of cuprate
    by the t-t′-J model, which is approximated via renormalized mean field theory
    (RMFT).
    In general, exact diagonalization is used in calculating the eigenfunction of a
    given mean-field Hamiltonian. In this thesis, Kernel Polynomial has been implemented
    to estimate the spectral weight. Then we could get the density matrix and
    the order parameters. On the other hand, parallel computation via CPU/GPU has
    been applied. By using RMFT+KPM via acceleration of GPU, the system’s size
    could be pushed to a huge scale (about 104 ∼ 105 electrons ).
    A long-standing puzzle in the cuprate vortex problem is that the absence of zeros
    bias conductance peak (ZBCP) in experimental observation until recent report
    Renner et al. [1]. Another central issue is the relationship between PDW and PG.
    Recent spectroscopic imaging scanning tunneling microscopy (SI-STM) results [2]
    indicated the existence of CDW peaks QP and 2QP under magnetic field. In this
    work, two critical findings will be addressed:
    (1) The continuum-local density of state(c-LDOS), that convolute lattice Green’s
    function with the Wannier function, is shown to be the sub-gap structure (SGS).
    Also, our result indicates that the dopant- and field- dependence should not be ignored.
    (2) A candidate checkerboard (CB) state is shown to simulate the STM experiment
    [2, 3]. The result suggests that the dominating s′ form factor is related to the existence of antiferromagnetic order near the halo.

    Acknowledgements iii 誌謝 v Abstract ii 摘要 i 1 Introduction 1 1.1 High-Tc superconductor cuprate . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Cuprate Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation-1: Checkerboard Halo state . . . . . . . . . . . . . . . . . . . . . 4 1.4 Motivation-2. Absence of ZBCP . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5 Minimum Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.6 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Method 9 3 Results and Discussion: Two vortex solutions 15 3.1 Plain-Vortex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Checkerboard State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 CDW of the CB-halo state . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Fourier Transform of the vortex structure . . . . . . . . . . . . . . . . . . . . 23 4 Results and Discussion.Absence of ZBCP 27 4.1 tunneling conductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 5 Results and Discussion: Checkerboard halo 31 5.1 Checkerboard Halo state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Quasi-Particle Interference v.s. Charge Order . . . . . . . . . . . . . . . . . . 34 6 Summary 37 Bibliography 39 Appendices 51

    [1] Tim Gazdić, Ivan Maggio-Aprile, Genda Gu, and Christoph Renner. Wang-MacDonald d-Wave Vortex Cores Observed in Heavily Overdoped Bi2Sr2CaCu2O8+δ. Phys. Rev.X, 11:031040, Aug 2021.
    [2] S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H. Eisaki, S. Uchida, Subir Sachdev,Michael J. Lawler, E.-A. Kim, J. C. Séamus Davis, and M. H. Hamidian. Magnetic Field Induced Pair Density Wave State in the Cuprate Vortex Halo. Science, 364(6444):976–980, 2019.
    [3] T. Machida, Y. Kohsaka, K. Matsuoka, K. Iwaya, T. Hanaguri, and T. Tamegai. Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ. Nat.Commun.,7:11747–11747, May 2016.
    [4] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of Superconductivity. Phys. Rev.,108:1175–1204, Dec 1957.
    [5] W. L. McMillan. Transition Temperature of Strong-Coupled Superconductors. Phys. Rev.,167:331–344, Mar 1968.
    [6] J. G. Bednorz and K. A. Müller. Possible highTc superconductivity in the Ba−La−Cu−O system.
    [7] J. G. Bednorz and K. A. Müller. Perovskite-Type Oxides - The New Approach to High-Tc Superconductivity. Nobel Lectures, Physics, (1981-1990):424–457, 1993.39
    [8] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Q.Wang, and C. W. Chu. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58:908–910, Mar 1987.
    [9] Hiroshi Maeda, Yoshiaki Tanaka, Masao Fukutomi, and Toshihisa Asano. A New High-Tc Oxide Superconductor without a Rare Earth Element. Japanese Journal of Applied Physics, 27(Part 2, No. 2):L209–L210, feb 1988.
    [10] Z. Z. Sheng and A. M. Hermann. Superconductivity in the rare-earth-free Tl−Ba−Cu−O system above liquid-nitrogen temperature. Nature, 332(6159):55–58, Mar 1988.
    [11] A. Schilling, M. Cantoni, J. D. Guo, and H. R. Ott. Superconductivity above 130 K in the Hg − Ba − Ca − Cu − O system. Nature, 363(6424):56–58, May 1993.
    [12] L. Gao, Y. Y. Xue, F. Chen, Q. Xiong, R. L. Meng, D. Ramirez, C. W. Chu, J. H. Eggert, and H. K. Mao. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50:4260–4263, Aug 1994.
    [13] F. Steglich, J. Aarts, C. D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer. Superconductivity in the Presence of Strong Pauli Paramagnetism: CeCu2Si2. Phys. Rev.Lett., 43:1892–1896, Dec 1979.
    [14] Shunichiro Kittaka, Yuya Aoki, Yasuyuki Shimura, Toshiro Sakakibara, Silvia Seiro,Christoph Geibel, Frank Steglich, Hiroaki Ikeda, and Kazushige Machida. Multiband Superconductivity with Unexpected Deficiency of Nodal Quasiparticles in CeCu2Si2. Phys.Rev. Lett., 112:067002, Feb 2014.
    [15] G. R. Stewart. Unconventional superconductivity. Advances in Physics, 66(2):75–196,2017.
    [16] C. C. Tsuei, J. R. Kirtley, C. C. Chi, Lock See Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen. Pairing Symmetry and Flux Quantization in a Tricrystal Superconducting Ring of YBa2Cu3O7−δ. Phys. Rev. Lett., 73:593–596, Jul 1994.40
    [17] J. R. Kirtley, C. C. Tsuei, Martin Rupp, J. Z. Sun, Lock See Yu-Jahnes, A. Gupta, M. B. Ketchen, K. A. Moler, and M. Bhushan. Direct Imaging of Integer and Half-Integer Josephson Vortices in High- Tc Grain Boundaries. Phys. Rev. Lett., 76:1336–1339, Feb 1996.
    [18] C. C. Tsuei and J. R. Kirtley. Pairing symmetry in cuprate superconductors. Rev. Mod.Phys., 72:969–1016, Oct 2000.
    [19] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen. From quantum matter to high-temperature superconductivity in copper oxides. Nature, 518(7538):179–186, Feb 2015.
    [20] Eduardo Fradkin, Steven A. Kivelson, and John M. Tranquada. Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys., 87:457–482, May 2015.
    [21] Patrick A. Lee, Naoto Nagaosa, and Xiao-Gang Wen. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys., 78:17–85, Jan 2006.
    [22] Riccardo Comin and Andrea Damascelli. Resonant X-Ray Scattering Studies of Charge Order in Cuprates. Annual Review of Condensed Matter Physics, 7(1):369–405, 2016.
    [23] Masaki Fujita, Haruhiro Hiraka, Masaaki Matsuda, Masato Matsuura, John M. Tranquada, Shuichi Wakimoto, Guangyong Xu, and Kazuyoshi Yamada. Progress in Neutron Scattering Studies of Spin Excitations in High-Tc Cuprates. Journal of the Physical Society of Japan, 81(1):011007, 2012.
    [24] Andrea Damascelli, Zahid Hussain, and Zhi-Xun Shen. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys., 75:473–541, Apr 2003.
    [25] Øystein Fischer, Martin Kugler, Ivan Maggio-Aprile, Christophe Berthod, and Christoph Renner. Scanning tunneling spectroscopy of high-temperature superconductors. Rev.Mod. Phys., 79:353–419, Mar 2007.41
    [26] D. F. Agterberg and H. Tsunetsugu. Dislocations and vortices in pair-density-wave superconductors. Nat. Phys., 4(8):639–642, Aug 2008.
    [27] Daniel F. Agterberg, J.C. Séamus Davis, Stephen D. Edkins, Eduardo Fradkin, Dale J.Van Harlingen, Steven A. Kivelson, Patrick A. Lee, Leo Radzihovsky, John M. Tranquada, and Yuxuan Wang. The Physics of Pair-Density Waves: Cuprate Superconductors and Beyond. Annu. Rev. Condens. Matter Phys., 11(1):231–270, 2020.
    [28] Zengyi Du, Hui Li, and Kazuhiro Fujita. Atomic-Scale Visualization of the Cuprate Pair Density Wave State. J. Phys. Soc. Jpn., 90(11):111003, 2021.
    [29] Peter Fulde and Richard A. Ferrell. Superconductivity in a Strong Spin-Exchange Field. Phys. Rev., 135:A550–A563, Aug 1964.
    [30] Yu.N. Larkin, A.I.; Ovchinnikov. Inhomogeneous State of Superconductors. Sov. Phys.JETP., 20:762, 1965.
    [31] Patrick A. Lee. Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors. Phys. Rev. X, 4:031017, Jul 2014.
    [32] Zhehao Dai, T. Senthil, and Patrick A. Lee. Modeling the pseudogap metallic state in cuprates: Quantum disordered pair density wave. Phys. Rev. B, 101:064502, Feb 2020.
    [33] Wei-Lin Tu and Ting-Kuo Lee. Genesis of charge orders in high temperature superconductors. Sci. Rep., 6(1):18675, Jan 2016.
    [34] Wei-Lin Tu and Ting-Kuo Lee. Evolution of Pairing Orders between Pseudogap and Superconducting Phases of Cuprate Superconductors. Sci. Rep., 9(1):1719, Feb 2019.
    [35] Peayush Choubey, Wei-Lin Tu, Ting-Kuo Lee, and P J Hirschfeld. Incommensurate charge ordered states in the t − t′ − J model. New J. Phys., 19(1):013028, Jan 2017.
    [36] B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey,
    N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schröder. Spins in the
    Vortices of a High-Temperature Superconductor. Science, 291(5509):1759–1762, 2001. 42
    [37] J. E. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C.Davis. A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi2Sr2CaCu2O8+δ. Science, 295(5554):466–469, 2002.
    [38] Ken Matsuba, Hideaki Sakata, Naoto Kosugi, Hitoshi Nishimori, and Nobuhiko Nishida. Ordered Vortex Lattice and Intrinsic Vortex Core States in Bi2Sr2CaCu2Ox Studied by Scanning Tunneling Microscopy and Spectroscopy. J. Phys. Soc. Jpn., 72(9):2153–2156, 2003.
    [39] Ken Matsuba, Shunsuke Yoshizawa, Yugo Mochizuki, Takashi Mochiku, Kazuto Hirata,and Nobuhiko Nishida. Anti-phase Modulation of Electron- and Hole-like States in Vortex Core of Bi2Sr2CaCu2Ox Probed by Scanning Tunneling Spectroscopy. J. Phys. Soc. Jpn., 76(6):063704, 2007.
    [40] T. Hanaguri, Y. Kohsaka, M. Ono, M. Maltseva, P. Coleman, I. Yamada, M. Azuma,M. Takano, K. Ohishi, and H. Takagi. Coherence Factors in a High-Tc Cuprate Probed by Quasi-Particle Scattering Off Vortices. Science, 323(5916):923–926, 2009.
    [41] M. H. Hamidian, S. D. Edkins, K. Fujita, A. Kostin, A. P. Mackenzie, H. Eisaki, S. Uchida, M. J. Lawler, E. A. Kim, Subir Sachdev, and J. C. Séamus Davis. Magnetic-field Induced Interconversion of Cooper Pairs and Density Wave States within Cuprate Composite Order. arXiv:1508.00620, 2015.
    [42] Daniel F. Agterberg and Julien Garaud. Checkerboard Order in Vortex Cores from Pairdensity-wave Superconductivity. Phys. Rev. B, 91:104512, Mar 2015.
    [43] Yuxuan Wang, Stephen D. Edkins, Mohammad H. Hamidian, J. C. Séamus Davis, Eduardo Fradkin, and Steven A. Kivelson. Pair density waves in superconducting vortex halos. Phys. Rev. B, 97:174510, May 2018.
    [44] Zhehao Dai, Ya-Hui Zhang, T. Senthil, and Patrick A. Lee. Pair-density waves, chargedensity waves, and vortices in high-Tc cuprates. Phys. Rev. B, 97:174511, May 2018.
    [45] Yong Wang and A. H. MacDonald. Mixed-state quasiparticle spectrum for d-wave superconductors. Phys. Rev. B, 52:R3876–R3879, Aug 1995. 43
    [46] M. Franz and Z. Tešanović. Self-Consistent Electronic Structure of a dx2−y2 and a dx2−y2+idxy Vortex. Phys. Rev. Lett., 80:4763–4766, May 1998.
    [47] Peayush Choubey, T. Berlijn, A. Kreisel, C. Cao, and P. J. Hirschfeld. Visualization of atomic-scale phenomena in superconductors: Application to FeSe. Phys. Rev. B, 90:134520, Oct 2014.
    [48] A. Kreisel, Peayush Choubey, T. Berlijn, W. Ku, B. M. Andersen, and P. J. Hirschfeld.Interpretation of Scanning Tunneling Quasiparticle Interference and Impurity States in Cuprates. Phys. Rev. Lett., 114:217002, May 2015.
    [49] Peayush Choubey, Sang Hyun Joo, K. Fujita, Zengyi Du, S. D. Edkins, M. H. Hamidian, H. Eisaki, S. Uchida, A. P. Mackenzie, Jinho Lee, J. C. Séamus Davis, and P. J. Hirschfeld. Atomic-scale electronic structure of the cuprate pair density wave state coexisting with superconductivity. Proc. Natl. Acad. Sci. U.S.A., 117(26):14805–14811, 2020.
    [50] Shuqiu Wang, Peayush Choubey, Yi Xue Chong, Weijiong Chen, Wangping Ren, H. Eisaki, S. Uchida, Peter J. Hirschfeld, and J. C. Séamus Davis. Scattering interference signature of a pair density wave state in the cuprate pseudogap phase. Nat. Commun., 12(1):6087, Oct 2021.
    [51] V. J. Emery. Theory of high-Tc superconductivity in oxides. Phys. Rev. Lett., 58:2794, 1987.
    [52] P. W. ANDERSON. The Resonating Valence Bond State in La2CuO4 and Superconductivity. Science, 235(4793):1196, 1987.
    [53] F. C. Zhang and T. M. Rice. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B, 37:3759, 1988.
    [54] F. C. Zhang and T. M. Rice. Validity of the t - J model. Phys. Rev. B, 41:7243, 1990.
    [55] E. Berg, E. Fradkin, E.-A. Kim, S. A. Kivelson, V. Oganesyan, J. M. Tranquada, and S. C. Zhang. Dynamical Layer Decoupling in a Stripe-Ordered High-Tc Superconductor. Phys. Rev. Lett., 99:127003, Sep 2007. 44
    [56] D. F. Agterberg, Z. Zheng, and S. Mukherjee. Spatial Line Nodes and Fractional Vortex Pairs in the Fulde-Ferrell-Larkin-Ovchinnikov Vortex State of Spin-Singlet Superconductors. Phys. Rev. Lett., 100:017001, Jan 2008.
    [57] Erez Berg, Eduardo Fradkin, and Steven A. Kivelson. Theory of the striped superconductor. Phys. Rev. B, 79:064515, Feb 2009.
    [58] Erez Berg, Eduardo Fradkin, Steven A Kivelson, and John M Tranquada. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates. New J. Phys., 11(11):115004, nov 2009.
    [59] J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung, Youjin Deng, Michel Ferrero, Thomas M. Henderson, Carlos A. Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis, N. V. Prokof’ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi, B. V. Svistunov, Luca F. Tocchio, I. S. Tupitsyn, Steven R. White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and Emanuel Gull. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms. Phys. Rev. X, 5:041041, Dec 2015.
    [60] Bo-Xiao Zheng, Chia-Min Chung, Philippe Corboz, Georg Ehlers, Ming-Pu Qin, Reinhard M. Noack, Hao Shi, Steven R. White, Shiwei Zhang, and Garnet Kin-Lic Chan. Stripe order in the underdoped region of the two-dimensional Hubbard model. Science, 358(6367):1155–1160, 2017.
    [61] A. Himeda, T. Kato, and M. Ogata. Stripe States with Spatially Oscillating d-Wave Superconductivity in the Two-Dimensional t − t′ − J Model. Phys. Rev. Lett., 88:117001, Feb 2002.
    [62] Chung-Pin Chou, Noboru Fukushima, and Ting Kuo Lee. Cluster-glass wave function in the two-dimensional extended t−J model. Phys. Rev. B, 78:134530, Oct 2008.
    [63] Kota Ido, Takahiro Ohgoe, and Masatoshi Imada. Competition among various chargeinhomogeneous states and d-wave superconducting state in Hubbard models on square lattices. Phys. Rev. B, 97:045138, Jan 2018. 45
    [64] Steven R. White and D. J. Scalapino. Pairing on striped t−t
    ′−J lattices. Phys. Rev. B, 79:220504, Jun 2009.
    [65] Edwin W. Huang, Christian B. Mendl, Hong-Chen Jiang, Brian Moritz, and Thomas P. Devereaux. Stripe order from the perspective of the Hubbard model. npj Quantum Mater., 3(1):22, Apr 2018.
    [66] Hong-Chen Jiang and Thomas P. Devereaux. Superconductivity in the doped Hubbard model and its interplay with next-nearest hopping t′. Science, 365(6460):1424–1428, 2019.
    [67] Philippe Corboz, Steven R. White, Guifré Vidal, and Matthias Troyer. Stripes in the two-dimensional t-J model with infinite projected entangled-pair states. Phys. Rev. B, 84:041108, Jul 2011.
    [68] Philippe Corboz, T. M. Rice, and Matthias Troyer. Competing States in the t-J Model: Uniform d-Wave State versus Stripe State. Phys. Rev. Lett., 113:046402, Jul 2014.
    [69] Boris Ponsioen, Sangwoo S. Chung, and Philippe Corboz. Period 4 stripe in the extended two-dimensional Hubbard model. Phys. Rev. B, 100:195141, Nov 2019.
    [70] Kai-Yu Yang, Wei Qiang Chen, T M Rice, M Sigrist, and Fu-Chun Zhang. Nature of stripes in the generalizedt–Jmodel applied to the cuprate superconductors. New J. Phys., 11(5):055053, may 2009.
    [71] R. B. Christensen, P. J. Hirschfeld, and B. M. Andersen. Two routes to magnetic order by disorder in underdoped cuprates. Phys. Rev. B, 84:184511, Nov 2011.
    [72] W.-L. Tu. Utilization of Renormalized Mean-Field Theory upon Novel Quantum
    Materials. Springer, Singapore, 2019.
    [73] M. H. Hamidian, S. D. Edkins, Sang Hyun Joo, A. Kostin, H. Eisaki, S. Uchida, M. J. Lawler, E.-A. Kim, A. P. Mackenzie, K. Fujita, Jinho Lee, and J. C. Séamus Davis. Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x. Nature, 532(7599):343–347, Apr 2016. 46
    [74] Makoto Hashimoto, Inna M. Vishik, Rui-Hua He, Thomas P. Devereaux, and Zhi-Xun Shen. Energy gaps in high-transition-temperature cuprate superconductors. Nat. Phys., 10(7):483–495, Jul 2014.
    [75] Martin C. Gutzwiller. Effect of Correlation on the Ferromagnetism of Transition Metals. Phys. Rev. Lett., 10:159–162, Mar 1963.
    [76] A. Himeda and M. Ogata. Coexistence of dx2−y2 superconductivity and antiferromagnetism in the two-dimensional t−J model and numerical estimation of Gutzwiller factors. Phys. Rev. B, 60:R9935–R9938, Oct 1999.
    [77] Masao Ogata and Akihiro Himeda. Superconductivity and Antiferromagnetism in an Extended Gutzwiller Approximation for t–J Model: Effect of Double-Occupancy Exclusion. J. Phys. Soc. Jpn., 72(2):374–391, 2003.
    [78] Wei-Lin Tu, Frank Schindler, Titus Neupert, and Didier Poilblanc. Competing orders in the Hofstadter t − J model. Phys. Rev. B, 97:035154, Jan 2018.
    [79] Walter Kohn. Theory of Bloch Electrons in a Magnetic Field: The Effective Hamiltonian. Phys. Rev., 115:1460–1478, Sep 1959.
    [80] Jian-Xin Zhu and C. S. Ting. Quasiparticle States at a d-Wave Vortex Core in High- Tc Superconductors: Induction of Local Spin Density Wave Order. Phys. Rev. Lett., 87:147002, Sep 2001.
    [81] Markus Schmid, Brian M Andersen, Arno P Kampf, and P J Hirschfeld. d-Wave superconductivity as a catalyst for antiferromagnetism in underdoped cuprates. New J. Phys., 12(5):053043, may 2010.
    [82] E. Brown. Bloch Electrons in a Uniform Magnetic Field. Phys. Rev., 133:A1038–A1044, Feb 1964.
    [83] Zhentao Wang, Gia-Wei Chern, Cristian D. Batista, and Kipton Barros. Gradient-based stochastic estimation of the density matrix. J. Chem. Phys., 148(9):094107, 2018. 47
    [84] Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The kernel polynomial method. Rev. Mod. Phys., 78:275–306, Mar 2006.
    [85] L. Covaci, F. M. Peeters, and M. Berciu. Efficient Numerical Approach to Inhomogeneous Superconductivity: The Chebyshev-Bogoliubov–de Gennes Method. Phys. Rev. Lett., 105:167006, Oct 2010.
    [86] Yuki Nagai, Noriyuki Nakai, and Masahiko Machida. Direct numerical demonstration of sign-preserving quasiparticle interference via an impurity inside a vortex core in an unconventional superconductor. Phys. Rev. B, 85:092505, Mar 2012.
    [87] C. Berthod. Vortex spectroscopy in the vortex glass: A real-space numerical approach. Phys. Rev. B, 94:184510, Nov 2016.
    [88] Here we notice uiu∗ j and v∗i vj is generally complex. However, the imaginary part, which has some pattern to the magnetic flux, is smaller than the real part by about two orders of magnitude. Therefore, the calculation of the spectra only considered the real part.
    [89] J. W. Alldredge, Jinho Lee, K. McElroy, M. Wang, K. Fujita, Y. Kohsaka, C. Taylor, H. Eisaki, S. Uchida, P. J. Hirschfeld, and J. C. Davis. Evolution of the electronic excitation spectrum with strongly diminishing hole density in superconducting Bi2Sr2CaCu2O8+δ. Nat. Phys., 4(4):319–326, Apr 2008.
    [90] Yi-Hsuan Liu, Wei-Lin Tu, Gia-Wei Chern, and Ting-Kuo Lee. Intertwined Orders and Electronic Structure in Superconducting Vortex Halos. Unpublished.
    [91] This equation is not derived rigorously. The GW factors due to intersite correlation gs,zij /gs,xyij [70, 76, 77] is included in an average over four n.n. bonds.
    [92] Yuxuan Wang, Stephen D. Edkins, Mohammad H. Hamidian, J. C. Séamus Davis, Eduardo Fradkin, and Steven A. Kivelson. Pair density waves in superconducting vortex halos. Phys. Rev. B, 97:174510, May 2018. 48
    [93] Peayush Choubey, Andreas Kreisel, T. Berlijn, Brian M. Andersen, and P. J. Hirschfeld. Universality of scanning tunneling microscopy in cuprate superconductors. Phys. Rev. B, 96:174523, Nov 2017.
    [94] Kun Yang and S. L. Sondhi. Zeeman and orbital effects of an in-plane magnetic field in cuprate superconductors. Journal of Applied Physics, 87(9):5549–5551, 2000.
    [95] B.A. Scott, E.Y. Suard, C.C. Tsuei, D.B. Mitzi, T.R. McGuire, B.-H. Chen, and
    D. Walker. Layer dependence of the superconducting transition temperature of
    HgBa2Can−1CunO2n+2+δ. Physica C: Superconductivity, 230(3):239–245, 1994.

    QR CODE