簡易檢索 / 詳目顯示

研究生: 吳庭璿
Wu, Ting-Shiun
論文名稱: Modeling of Signal-to-noise Ratio for Wireless Sensor Networks in Inhomogeneous Sensing Environments
無線感測網路非均質感測環境下之訊雜比模型化研究
指導教授: 蔡育仁
Tsai, Yuh-Ren
口試委員: 吳卓諭
洪樂文
蔡育仁
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 通訊工程研究所
Communications Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 42
中文關鍵詞: 非齊次無線感測訊雜比機率分佈
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇研究中,我們探討在非齊次的無線感測環境中,感測器接收時的訊雜比會呈現何種機率分佈。文中假設所有感測器都以均勻分佈的部放在一個感測區域中,並且分別考慮無線傳輸通道具有傳送損耗以及傳送損耗加上遮蔽效應兩種會影響接收訊雜比的情況。在這兩種情況下分別推導出感測器在不同維度的部放時訊雜比的機率分佈密度函數。為了讓以後研究者在模擬無線環境時能更便利,我們利用統計學上動差配適的方法,將推導出的機率密度函數趨近到已知且常見的機率分佈密度函數,並且計算兩個機率密度函數的距離。過程中,我們可以發現在線性刻度時,用動差配適的方法無法精準地趨近到常見的機率密度函數,不過在dB刻度時用動差配適的方法便可以精準地趨近到常見的機率密度函數,計算出的距離也能印證這個論點。最後我們將參數列表讓之後的研究在使用時更為方便。


    In this work, we investigate the distribution of observation signal-to-noise ratios (SNRs) at sensors in the inhomogeneous sensing environments. The sensor nodes are assumed to be uniformly deployed in the sensing field, and the effects of propagation loss and shadowing loss are considered in the received SNR. The exact distributions of the observation SNRs are derived under different signal propagation scenarios. Then, some simplified distribution models, based on some well-known distributions, for the observation SNRs are proposed by using the moment matching approach. It is found that the accuracy of modeling the observation SNRs in the linear scale is not acceptable; however, by modeling the observation SNRs in the dB scale, a very good accuracy can be obtained.

    Abstract I Contents II Chapter 1 1 Introduction 1 Chapter 2 3 System Model 3 2.1 Path Loss Model 3 2.2 Shadowing 3 2.3 Sensing Model 4 Chapter 3 9 Modeling of Signal-to-noise Ratio 9 3.1 Two-dimensional Space with Path Loss Decay 9 3.2 Two-dimensional Space with Path Loss Decay and Shadowing Fading 14 3.3 One-dimensional Space with Path Loss Decay 17 3.4 One-dimensional Space with Path Loss Decay and Shadowing Fading 20 3.5 Three-dimensional Space with Path Loss Decay 22 3.6 Three-dimensional Space with Path Loss Decay and Shadowing Fading 24 Chapter 4 26 Numerical Results 26 Chapter 5 40 Conclusion 40 References 42

    [1] J. Li and G. AlRegib, "Network lifetime maximization for estimation in multihop wireless sensor networks," IEEE Trans. on Signal Processing, vol. 57, no. 7, pp. 2456-2466, Jul. 2009.
    [2] J.-J. Xiao, S. Cui, Z.-Q. Luo, and A. J. Goldsmith, “Power scheduling
    of universal decentralized estimation in sensor networks,” IEEE Trans.
    Signal Process., vol. 54, no. 2, pp. 413–422, Feb. 2006.
    [3] S. Misra, S.C. Misra and I. Woungang, Guide to Wireless Sensor Networks,
    Springer, 2009.
    [4] A. Goldsmith, Wireless Communications, Cambridge University Press, 2005.
    [5] G.L. Stuber, Principles of Mobile Communication, Kluwer Academic Publishers, 2001.
    [6] D. J. Olive, Applied Robust Statistics, Southern Illinois University, 2008.
    [7] A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by probability distributions,” Bull. Calcutta Math. Soc., vol. 35, pp. 99–109, 1943.
    [8] J. P. K. Chu, R. S. Adve, and A. W. Eckford, “Using the Bhattacharyya parameter for design and analysis of cooperative wireless systems,” IEEE Trans. Wireless Commun., vol. 8, no. 3, pp.
    [9] 1384-1395, Mar. 2009 S. Salas, E. Hille, G. Etgen, Calculus, John Wiley & Sons, Inc, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE