簡易檢索 / 詳目顯示

研究生: 謝宗修
Hsieh, Tsung-Hsiu
論文名稱: 新穎鈦亞磷酸鹽/次磷酸鹽之 合成、結構與性質研究
Synthesis, Structure and Characterization of Novel Titanium Phosphites and Hypophosphites
指導教授: 王素蘭
Wang, Sue-Lein
口試委員: 黃暄益
Huang, Hsuan-Yi
林嘉和
Lin, Chia-Her
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 153
中文關鍵詞: 亞磷酸鹽次磷酸鹽
外文關鍵詞: Titanium, Phosphites, Hypophosphites
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文利用水熱反應法開發了四個三價鈦亞磷酸鹽(A1-A4)與三個鈦次磷酸鹽(B1-B3)。所有化合物的晶體結構皆以單晶X光繞射儀收集數據後進行結構解析,以粉末X光繞射圖譜比對理論圖譜確定樣品純度後,再進行其他物理及化學性質的測量。研究成果分為A和B兩個系列討論:
    A系列為四個三價鈦亞磷酸鹽,分別為 Ti2III(HPO3)3 (A1) 、[Ti2III(HPO3)3(H2O)3]‧(H2O) (A2) 、α -TiIII(H2PO3)(HPO3) (H2O) (A3)、
    β -TiIII(H2PO3)(HPO3)(H2O) (A4) ,目前文獻中三價鈦亞磷酸鹽從未被發表過。 首先,A1結構由TiO6八面體以共面的形式形成Ti2O9的雙聚體,透過HPO3四面體連接形成三維結構,A2結構首先由Ti(1)形成的Ti(H2O)2O4八面體與HPO3四面體以共角的方式形成一維無限鍊,再由Ti(2)形成的Ti(H2O)O5八面體與HPO3四面體形成四員環鏈,且一維無限鍊與四員環鏈間會以共角的方式連接,並向外無限延伸,形成三維的結構,觀察A1與A2的化學式可以發現它們的鈦與亞磷酸比例相同,差異為A2化學式中多了結晶水與配位水,A3結構由Ti(H2O)O5八面體與HPO3四面體形成由六員環組成的二維層,再由H2PO3四面體連接二維無機層,形成一個三維的結構,A4結構由Ti(H2O)O5八面體與HPO3四面體形成由四、八員環組成的二維層,再由H2PO3四面體連接二維無機層,形成一個三維的結構,觀察A3與A4的化學式可以發現它們互為同分異構物,因此將A3命為α –form,A4命為β–form。我也將A系列化合物進行一系列後續性質鑑定,並觀察到A3與A4在空氣中會氧化成混價(A3’)與四價(A4’)鈦亞磷酸鹽,且可以藉由將其浸泡在乙二醇和乙醇中照射氙燈(300 nm-850 nm)的方式將其還原成三價鈦亞磷酸鹽。文獻上鈦磷酸/亞磷酸鹽結構非常罕見,且三價與混價的鈦亞磷酸鹽皆未曾被發表過,因此A系列的化合物在鈦磷酸/亞磷酸鹽系統中是很大的突破,且A3與A4具有特殊的氧化及還原現象。

    B系列為三個鈦次磷酸鹽,分別為α - TiIII(H2PO2)3 (B1)、β - TiIII(H2PO2)3 (B2)
    、TiIII1-xTiIVxF1-xOx(H2PO2)2 x ≒ 0.21 (B3),其中B1與B2為純三價鈦次磷酸鹽,B3為混價鈦次磷酸鹽。首先,B1結構由TiO6八面體與H2PO2四面體形成一維無限鍊,再藉由H2PO2四面體以共角的方式連接,形成由四、八員環組成的二維的層狀結構,B2結構由TiO6八面體與H2PO2四面體形成由八員環組成的二維層,再由H2PO2四面體連接二維無機層,形成一個三維的結構,觀察B1與B2的化學式可以發現它們互為同分異構物,因此將B1命為α –form,B2命為β–form,B3結構由鈦氧氟八面體以共角的方式連接形成一維無限鍊,再藉由H2PO2四面體連接形成一個三維的結構,我也將B系列化合物進行一系列後續性質鑑定。文獻中,三價與混價的鈦亞磷酸鹽皆未曾被發表過,因此B系列的三個化合物在鈦磷酸/亞磷酸/次磷酸鹽系統中是很大的突破。


    This thesis presents four titanium phosphites (A1-A4) and three hypophosphites (B1-B3) synthesized under hydrothermal conditions. All compounds were structurally characterized by single crystal X-ray diffraction and the valence state of Ti was verified by various methods.
    All four titanium phosphites, Ti2III(HPO3)3 (A1), [Ti2III(HPO3)3(H2O)3]‧(H2O) (A2), α - TiIII(H2PO3)(HPO3)(H2O) (A3), β - TiIII(H2PO3)(HPO3)(H2O) (A4) are three-dimensional (3D) structures containing trivalent titanium ions, which are rare in the literature. The structure of A1 consists of Ti2O9 face-sharing octahedral dimers, which are interlinked by HPO3 groups to form a 3D structure within 12-membered-ring (12MR) channels running along the c axis. A2 with a hydrous formula of A1 cantains two kinds of titanium octahedra: Ti(H2O)2O4 and Ti(H2O)O5. They share corners with HPO3 tetrahedra to form infinite chains and 4MR columns, which are interconnected into a 3D structure via corner sharing. A3 and A4 are polymorphs, both of which are composed of [TiIII(H2O)(HPO3)]+ sheets pillared by H2PO3 tetrahedra to form 3D structures. The difference between two polymorphs is the connectivity of the [TiIII(H2O)(HPO3)]+ sheets in which 6MR for A3 and 4, 8MR for A4. The oxidation process of A3 and A4 into mixed-valence (A3’) and tetravalent titanium (A4’) phosphites in air was monitored. They could be reduced back to trivalent titanium phosphites by immersing in ethylene glycol or ethanol under xenon lamp irradiation (300 nm-850 nm).
    Three titanium hypophosphites α - TiIII(H2PO2)3 (B1), β - TiIII(H2PO2)3 (B2), TiIII1-xTiIVxF1-xOx(H2PO2)2 x ~ 0.21 (B3) were prepared hydrothermally for the first time. B1 and B2 are polymorphs with different dimensionality. The structure of B1 consists of TiO6 octahedra and H2PO2 tetrahedra sharing corners to form infinite chains, which are interlinked by H2PO2 tetrahedra to form a layered structure. On the other hand, the structure of B2 consists of 8MR layers composed of TiO6 octahedra and H2PO2 tetrahedra via corner sharing, which are connected by H2PO2 tetrahedra to form a 3D structure. The structure of B3 consists of TiO5F octahedra which share corners to form an infinite chain. These chains are interlinked by the H2PO2 tetrahedra into a 3D structure.
    In this research, reduced titanium phosphites and hypophosphites have been developed by systematic experiments. The structural chemistry of those compounds and the phenomenon of TiIII oxidized in air, have brought a new insight into the pursuit of titanium compounds.

    第一章 緒論 1-1 簡介 ............................................. 7 1-2 論文研究目標與成果摘要............................ 19 1-3 合成方法......................................22 1-4 藥品一覽表 ...................................... 25 1-5 鑑定方法 ....................................... 26 1-5-1 儀器測量簡介 ................................ 26 1-5-2 單晶X光繞射(SXRD)與結構分析................... 27 1-5-3 粉末X光繞射分析(PXRD) ..................... 31 1-5-4 熱重量分析(TGA) .............................. 32 1-5-5 固態核磁共振光譜 ............................ 32 1-5-6 超導量子干涉磁量儀(SQUID)磁性分析 ........... 33 1-5-7 X光吸收近邊緣結構......................... 34 1-5-8 紫外-可見光吸收光譜........................34 1-5-9 電子順磁共振儀............................34 1-5-10 高解析電子能譜儀.........................35 1-5-11 液態核磁共振光譜 ......................... 35 1-6 參考文獻 ...................................... 36 第二章 新穎三價鈦亞磷酸鹽之合成、結構與性質研究 2-1 簡介 ............................................. 41 2-2 實驗合成方法...................................... 46 2-3 化合物鑑定與分析....................................49 2-3-1 單晶X光繞射(SXRD)與結構分析 .................. 49 2-3-2 粉末X光繞射(PXRD)分析...................... 55 2-3-3 熱穩定性分析................................... 56 2-4 結果與討論 ...................................... 63 2-4-1 結構描述............................. 63 2-4-2 合成討論與結構比較..................... 73 2-4-3 性質討論...................................81 2-5 結論...............................................105 2-6 參考文獻 ....................................... 107 第三章 新穎鈦次磷酸鹽之合成、結構與性質研究 3-1 簡介 ............................................. 111 3-2 實驗合成方法...................................... 115 3-3 化合物鑑定與分析....................................117 3-3-1 單晶X光繞射(SXRD)與結構分析 .................. 117 3-3-2 粉末X光繞射(PXRD)分析...................... 121 3-3-3 熱穩定性分析................................... 122 3-4 結果與討論 ....................................... 128 3-4-1 結構描述................................ 128 3-4-2 合成討論與結構比較....................... 136 3-4-3 性質討論...................................142 3-5 結論...............................................147 3-6 參考文獻 ....................................... 149 第四章 總結....................................152 附錄 A、B系列晶體數據列表

    [1] D. W. Breck, Zeolite Molecular Sieves,Wiley, New York, 1974
    [2] J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227-230.
    [3] R. D. Miller, Science 1999, 286, 421-423.
    [4] J. M. Thomas, Angew. Chem., Int. Ed. 1999, 38, 3588-3628.
    [5] S. M. Kuznickl, V. A. Bell, S. Nair, H. W. Hillhouse, R. M. Jacubinas, C. M. Braunbarth, B. H. Toby, M. Tsapatsis, Nature 2001, 412, 720-724.
    [6] M. E. Davis, Nature 2002, 417, 813-821.
    [7] M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J.Wachter, M. O’Keeffe,
    O. M. Yaghi, Science 2002, 295, 469-472.
    [8] P. M. Forster, J. Eckert, J. S. Chang, S. E. Park, G. Férey, A. K.
    Cheetham, J. Am. Chem. Soc. 2003, 125, 1309-1312.
    [9] S. Kitagawa, R. Kitaura, S. Noro, Angew. Chem. Int. Ed. 2004, 43,
    2334-2375.
    [10] R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev. 2008, 108, 3549-3655.
    [11] A. J. Celestian, J. B. Parise, C. Goodell, A. Tripathi, J. Hanson, Chem. Mater. 2004, 16, 2244-2254.
    [12] H. K. Chae, D. Y. Siberio-Pérez, J. Kim, Y. Go, M. Eddaoudi, A. J. Matzger, M. O'Keeffe, O. M. Yaghi, Nature 2004, 427, 523-527.
    [13] D. Maspoch, D. Ruiz-Molina, J. Veciana, J. Chem. Soc. Rev. 2007, 36, 770-818.
    [14] A. F. Cronstedt, Akad handl. Stockholm, 1756, 17, 120-130.
    [15] S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen, J. Am. Chem. Soc. 1982, 104, 1146-1149.
    [16] G. Y. Yang, S. C. Sevov, J. Am. Chem. Soc. 1999, 121, 8389-8390.
    [17] J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew. Chem. Int. Ed. 2006, 45, 2608-2610.
    [18] M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J. Wu, J. S. Huang, Angew. Chem. Int. Ed. 2007, 46, 3909-3912.
    [19] I. Boy, F. Stowasser, G. Schafer, R. Kniep, Chem. Eur. J. 2001, 7, 834-839.
    [20] X. Zou, T. Conradsson, M. Klingstedt, M.S. Dadachov, M. O’Keeffe, Nature 2005, 437, 716-719.
    [21] T. E. Altrecht-Schmitt, Angew. Chem. Int. Ed. 2005, 44, 4836-4838.
    [22] H.Y. An, E.B. Wang, D. R. Xiao, Y. G. Li, Z. M. Su, L. Xu, Angew. Chem. Int. Ed. 2006, 45, 918-922.
    [23] H. Li, M. Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature 1999, 402, 276-279.
    [24] L. J. Murray, M. Dincă, J. R. Long, Chem. Soc. Rev. 2009, 38, 1294-1314.
    [25] S. S. Han, J. L. Mendoza-Cortés, W. A. Goddard III, Chem. Soc. Rev. 2009, 38, 1460-1476.
    [26] J. R. Li, R. J. Kuppler, H. C. Zhou, Chem. Soc. Rev. 2009, 38, 1477-1504.
    [27] M. D. Allendorf, C. A. Bauer, R. K. Bhakta, R. J. T. Houk, Chem. Soc. Rev. 2009, 38, 1330-1352.
    [28] J. Li, L. Li, J. Liang, P. Chen, J. Yu, Y. Xu, R. Xu, Cryst. Growth & Des. 2008, 8, 2318-2323.
    [29] C. H. Lin, S. L. Wang, K. L. Lii, J. Am. Chem. Soc. 2001, 123, 4649-4650.
    [30] C. H. Lin, Y. C. Yang, C. Y. Chen, S. L. Wang, Chem. Mater. 2006, 18, 2095-2101.
    [31] Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc. 2004, 126, 1320-1321.
    [32] Y. C. Liao, Y. C. Jiang, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 12794-12795.
    [33] Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Chem. Soc. 2005, 127, 9986-9987.
    [34] Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Chem. Soc. 2007, 129, 5350-5351.
    [35] Y. C. Yang, S. L. Wang, J. Am. Chem. Soc. 2008, 130, 1146-1147.
    [36] P. C. Jiang, Y. C. Yang, Y. C. Lai, Y. C. Liu, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 756-759.
    [37] S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int. Ed. 2009, 48, 6240-6243.
    [38] P. C. Jiang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010, 49, 4200-4204.
    [39] S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319-5322.
    [40] Y. C. Chang, S. L. Wang, J. Am. Chem. Soc. 2012, 134, 9848-9851.
    [41] H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang, Y. H. Lee, S. L. Wang, Science 2013, 339, 811-813.
    [42] H. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965-968.
    [43] Ming-Jhe Sie, Chia-Her Lin, and Sue-Lein Wang. J. Am. Chem. Soc. 2016, 138, 6719-6722.

    QR CODE