研究生: |
曾威凱 Tseng, Wei Kai |
---|---|
論文名稱: |
迴路式熱虹吸之冷凝器研究 Experiments on the Condenser of Loop Thermosyphon Heat Pipes |
指導教授: | 王訓忠 |
口試委員: |
許文震
簡國祥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 熱虹吸 、熱管 、冷凝器 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以實驗觀察迴路式熱虹吸熱管之垂直冷凝器的冷凝現象,主要的實驗參數為冷凝器的構造與表面親疏水性,包括:表面做親水處理之銅管、表面做疏水處理之銅管,以及表面做親水處理之溝槽管。三種冷凝管之冷凝效率依序為疏水銅管、溝槽銅管,與親水銅管,疏水銅管之冷凝熱阻可低於親水銅管達2-5倍之多;溝槽銅管之冷凝熱阻約為親水銅管的一半。疏水銅管之冷凝屬滴式凝結,凝結水以間歇方式流下,當增長最快的上段液滴達臨界尺寸後即迅速落下,路徑中掃清下方的液滴;親水溝槽管與平滑銅管皆為膜式凝結,其中親水銅管內冷凝液膜受水的表面張力影響,在流下的過程中會聚集於管圓周的某區域,使壁溫沿圓周呈現非均勻分佈。親水溝槽管中的溝槽提供毛細力,使液膜厚度沿圓周呈現均勻分佈,其上段中之冷凝水因可聚集於溝槽中,故溝槽管的上段熱阻為三者中的最小,但溝槽壁形成較大摩擦流阻而減緩冷凝水流下的速度,故溝槽管下段中的液膜增厚幅度為三者中最大。此外,親水銅管與親水溝槽銅管下方迴路中冷凝水位均有明顯震盪,平均冷凝水位主要受蒸汽摩擦壓降影響。
[1] T. E. Tsai, H. H. Wu, C. C. Chang, S. L. Chen, Two-phase closed thermosyphon vapor-chamber system for electronic cooling, Int. Comm. Heat Mass Transfer, 37(2010) 484-489.
[2] T. W. Davis, S. V. Garimella, Thermal resistance measurement across a wick structure using a novel thermosyphon test chamber, Exp. Heat Transfer, 21(2008)143-154.
[3] A. Alizadehdakhel, M. Rahimi, A. A. Alsairafi, CFD modeling of flow and heat transfer in a thermosyphon, Int. Comm. Heat Mass Transfer, 37 (2010) 312-318.
[4] S. Liu, J. Li, Q. Chen, Visualization of flow pattern in thermosyphon by ECT, Flow Measurement and Instrumentation, 18 (2007) 216-222.
[5] P. Amatachaya, W. Srimuang, Comparative heat transfer characteristics of a flat two-phase closed thermosyphon (FTPCT) and a conventional two-phase closed thermosyphon (CTPCT), International Communications in Heat and Mass Transfer, 37 (2010) 293-298.
[6] A. Franco, S. Filippeschi, Closed Loop Two-Phase Thermosyphon of Small Dimensions: a Review of the Experimental Results, Microgravity Sci. Technol., 24(2012) 165-179.
[7] W. Qu, Hydrodynamics of two-phase loop thermosyphon, Frontiers in Heat Pipes, 1 (2010) 023004.
[8] F. H. Milanez, M. B. H. Mantelli, Heat transfer limit due to pressure drop of a loop thermosyphon, 15th International Heat Pipe Conference, Clemson, USA, April 25-30, 2010.
[9] S. W. Chang, K. F. Chiang, C. Y. Lin, Loop thermosyphon electronic cooling device operated at sub-atmospheric pressure, 10th International Heat Pipe Symposium, Taipei, Taiwan, Nov. 6-9, 2011.
[10] 康尚文、黃俊賢,迴路式虹吸熱管之研製與可視化觀察,熱管理產業通訊,第24 期。
[11] S. L. Mahmood, N. Bagha, M.A.R. Akhanda, A.K.M.S. Islam, 2008. Heat transfer characteristics inside an evaporator of a two-phase closed loop thermosyphon with saw tooth ribbed evaporator surface. In “Advanced Design and Manufacture to Gain a Competitive Edge”, ed. X.T. Yan, 111-120. Springer London.
[12] R. Khodabandeh, R. Furberg, Heat transfer, flow regime and instability of a nano- and micro-porous structure evaporator in a two-phase thermosyphon loop, Int. J. Therm. Sci., 49(2010)1183-1192.
[13] 陳聖謙,迴路式熱虹吸管之薄膜蒸發,國立臺灣大學機械工程學研究所碩士論文,六月,2006。
[14] R.C.Chu, R.E. Simons, G.M. Chrysle, Experimental investigation of an enhanced thermosyphon heat loop for cooling of a high performance electronics module, 15th IEEE SEMI-THERMTM Symposium, 1999.
[15] W. C. Wang, X. H. Ma, Z. D. Wei, P. Yu, Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations, Int. J. Heat Mass Transfer, 41(1998)4341-4349.
[16] J.W. Rose, Dropwise condensation theory and experiment: a review, Proc. Instrn. Mech. Engrs. Part A: J Power and Energy, 216(2002)115-128.
[17] 黃中青,迴路式熱虹吸之冷凝器的可視化實驗,國立清華大學動力機械工程研究所碩士論文,七月,2013。
[18] O. Kabov, I. Marchuk, A. Glushchuk, Y. Lyulin, Enhancement of vapour condensation in heat pipes, 16th International Heat Pipe Conference, Lyon, France, May 20-24, 2012.
[19] P.K. Panday, Two-dimensional turbulent film condensation of vapours flowing inside a vertical tube and between parallel plates: a numerical approach, Int. J. Refrigeration 26 (2003) 492–503.
[20] R. Bellinghausen, U. Renz, Heat transfer and film thickness during condensation of steam flowing at high velocity in a vertical pipe, Int. J. Heat Mass Transfer, Vol. 35, No.3, pp. 683-689, 1992.
[21] Z. Huang, J. Zhang, J. Cheng, S. Xu, P. Pi, Z. Cai, X. Wen, Z. Yang, Preparation and characterization of gradient wettability surface depending on controlling Cu(OH)2 nanoribbon arrays growth on copper substrate, Appl. Surface Sci. 259(2012)142–146.
[22] J.-H. Liou, C.-W. Chang, C. Chao, S.-C. Wong, Visualization and thermal resistance measurement for the sintered mesh-wick evaporator in operating flat-plate heat pipes, Int. J. Heat Mass Transfer, 53(2010)1498-1506.
[23] S.-C. Wong , Y,-C. Lin, J.-H, Liou, Visualization and evaporator resistance measurement in heat pipes charged with water, methanol or acetone, Int. J. Thermal Sci. 52(2012)154-169.
[24] S.-C. Wong, C.-W. Chen, Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe, Int. J. Heat Mass Transfer, 55(2012)2229-2234.
[25] S.-C. Wong, H.-H. Tseng, S.-H. Chen, Visualization experiments on the condensation process in heat pipe wicks, Int. J. Heat Mass Transfer, 68(2014)625-632.
[26] eFunda, Inc. 2014. “Polymer Material Properties.” http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=TPE&MinorID=1