簡易檢索 / 詳目顯示

研究生: 陳世梁
Chen, Shih-Liang
論文名稱: Digital Modified-Logistic Map Based Systems for Secure Communications
基於數位化變更型邏輯映射混沌系統的安全傳輸
指導教授: 黃婷婷
Hwang, TingTing
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 89
中文關鍵詞: 混沌密碼系統數位傳輸偽隨機亂數產生器變更型邏輯映射系統
外文關鍵詞: chaotic secure system, digitail communication, pseudo random number generator, modified logistic map
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 混沌系統具有不規則,非周期性,無法預測和對於初始條件相當敏感的特質。而這些特質符合與密碼學上混亂和擴散的特性。因此,近年來混沌系統在密碼學上的應用被廣泛的討論與研究。然而,當混沌系統數位化的過程中,原先所保有的混沌特質產生了變化,這種現象又稱為動態特性的降低。一個明顯的例子就是數位化的混沌系統容易產生出一個短周期的輸出軌道。而一個短周期的軌道在統計學的角度上則是容易被分析且不適合應用於密碼系統。在這一篇論文中,我們將研究動態退化的現象並且提出數個方法來提升數位化混沌系統的隨機品質。主要的研究內容如下。首先,我們提出了強化型邏輯映射混沌系統。此系統擁有比傳統邏輯映射混沌系統更大範圍的可用參數,而且這個可用參數範圍內不會存在短周期的參數。基於強化型邏輯映射混沌系統,我們更提出了強化型多維度混沌系統,使其具有更多的可用參數來應用於安全傳輸系統。第二,我們提出了變化型邏輯映射混沌系統。此系統明顯的增加了單位時間的輸出量與隨機品質。此外我們串接數個變化型邏輯映射混沌系統來建立多變化型邏輯映射混沌系統,使其可容易擴張,並可以快速的產生具有高複雜度與長週期特性的混沌數列。最後,在本論文的第三部分則是針對偽隨機變數產生器應用提出了數位化變更型邏輯映射混沌系統。在這個系統中我們使用了參數選擇與擾動技術,我們有效的減少了系統的計算量並提高了輸出的複雜度。在現行的偽隨機亂數數列測試平台測試結果顯示,相比於先前所提出的混沌偽隨機亂數產生器,我們的系統使用了較低的硬體成本產生了較高隨機品質的偽隨機數列。


    The orbit of a chaotic system is irregular, aperiodic, unpredictable, and sensitive to initial
    conditions. These characteristics coincide with the confusion and diffusion properties in
    cryptography. In recent years, chaotic systems have been studied for secure communications.
    However, when a chaotic system is digitalized, it results in some unexpected behaviors
    due to limited precision. It is known as dynamical degradation. An obvious phenomenon
    is that an orbit enters a cycle with unpredictable length. The orbit with short cycle length
    has poor quality of randomness because it can be easily analyzed from statistical point of
    view.
    In this dissertation, we focus on improving quality of randomness for digitalized logistic
    maps. New modified logistic map and techniques are proposed to improve the degree of
    complexity for secure communications and pseudo random number generation. The main
    achievements of this dissertation are as follows.
    First, we propose a Robust Logistic Map (RLM) which has a larger parameter space
    than classical logistic map. Moreover, there are no windows with short period-length in the
    parameter space. Based on RLM, a Robust Hyper-Chaotic System (RHCS) is constructed
    for secure-communication systems with large parameter space.
    Second, we propose a Variational Logistic Map (VLM) to significantly increase the
    throughout and quality of randomness of RLM. Moreover, a Multiple Variational Logistic
    Map (MVLM) is proposed for fast chaotic sequence generator. Because of the regular
    architecture of MVLM, it is easy to scale up the system degree to provide long output
    sequence with high degree of complexity and large key space for secure communications.
    Pseudo Random Number Generators (PRNGs) are often an important component in secure
    communications. In the third part of this dissertation, we propose a PRNG based on
    a Digitalized Modified Logistic Map (DMLM). Two techniques, constant parameter selection and output scrambling are employed to reduce the computation cost and to increase the
    complexity of the PRNG. Compared to previous digitalized chaotic systems based PRNGs,
    our DMLM-PRNG has better quality of randomness and lower hardware cost.
    Each of our system mentioned above has been implemented. Comparisons between
    our systems and previous work are conducted in terms of hardware cost and throughput.
    Moreover, the quality of randomness is demonstrated by statistical analysis.

    1 Overview 1 1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Dissertation Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Digital Secure-Communications Using Robust Hyper-Chaotic Systems 7 2.1 Robust Hyper-Chaotic Encryption-Decryption System . . . . . . . . . . . 8 2.1.1 Robust Logistic Map . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 Construction of Robust Hyper-Chaotic System . . . . . . . . . . . 10 2.1.3 Encryption & Decryption . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Cryptanalysis of RHCDES . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.1 Parameter Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2 Re-construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3 System Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 Architecture of Encryption System . . . . . . . . . . . . . . . . . . 19 2.3.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 A Fast Non-Linear Digital Chaotic Generator in Secure Communications 29 3.1 Variational Logistic Map (VLM) . . . . . . . . . . . . . . . . . . . . . . . 30 3.2 Scrambling Method for VLM . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.3 Coupling Multi-VLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.1 Structure of Multi-VLM . . . . . . . . . . . . . . . . . . . . . . . 44 3.3.2 Key Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.3 Output Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4 Cryptanalysis of MVLM . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.4.1 Key Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4.2 Cycle Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.4.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.4.5 Reconstruction complexity . . . . . . . . . . . . . . . . . . . . . . 57 3.5 Hardware Architecture of MVLM . . . . . . . . . . . . . . . . . . . . . . 58 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4 Randomness Enhancement Using Digitalized Modified-Logistic Map 65 4.1 Modified Logistic Map based PRNG . . . . . . . . . . . . . . . . . . . . . 67 4.1.1 Digitalized Modified-Logistic Map . . . . . . . . . . . . . . . . . 67 4.1.2 Scrambling Method . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.1.3 Property of the System . . . . . . . . . . . . . . . . . . . . . . . . 71 4.1.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.2 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5 Conclusions 83 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

    [1] S. H. Strogatz, Nonlinear dynamics and chaos. Boston: Addison-Wesley, 1994.
    [2] R. Matthews, “On the derivation of a chaotic encryption algorithm,” Cryptologia,
    vol. 13, no. 1, pp. 29–42, 1989.
    [3] D. R. Frey, “Chaotic digital encoding: an approach to secure communication,” IEEE
    Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 40, no. 10, pp. 660–666,
    1993.
    [4] G. Heidari-Bateni and C. D. McGillem, “A chaotic direct-sequence spread-spectrum
    communication system,” IEEE Trans. Comm., vol. 42, pp. 1524–1527, 1994.
    [5] J. Cerm´ak, “Digital generators of chaos,” Phys. Lett. A, vol. 214, pp. 151–160, 1996.
    [6] M. G¨otz, K. Kelber, and W. Schwarz, “Discrete-time chaotic encryption systems –
    part I: statistical design approach,” IEEE Trans. Circuits Syst. I, Fundam. Theory
    Appl., vol. 44, no. 10, pp. 963–970, 1997.
    [7] C. Juang, T. M. Hwang, J. Juang, and W. W. Lin, “A synchronization scheme using
    self-pulsating laser diodes in optical chaotic communication,” IEEE J. Quantum
    Electron., vol. 36, no. 3, pp. 300–304, 2000.
    [8] S. Li, X. Mou, and Y. Cai, “Pseudo-random bit generator based on couple chaotic
    systems and its applications in stream-cipher cryptography,” in Proc. Progress in
    Cryptology-IndoCrypt, LNCS, vol. 2247. Springer-Verlag, 2001, pp. 316–329.
    [9] G. Jakimoski and L. Kocarev, “Chaos and cryptography: Block encryption ciphers
    based on chaotic maps,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48,
    no. 2, pp. 163–169, 2001.
    [10] C. Juang, S. T. Hwang, C. Y. Liu, W. Wang, T. M. Hwang, J. Juang, and W. W.
    Lin, “Subcarrier multiplexing by chaotic multi-tone modulation,” IEEE J. Quantum
    Electronics, vol. 39, no. 10, pp. 1321–1326, 2003.
    [11] G. ´Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,”
    Int. J. Bifurc. Chaos, vol. 16, no. 8, pp. 2129–2151, 2006.
    [12] C. Y. Li, J. S. Chen, and T. Y. Chang, “A chaos-based pseudo random number generator
    using timing-based reseeding method,” in IEEE Proc. Int. Symp. on Circuits and
    Systems, 2006, pp. 21–24.
    [13] X.Wang, J. Zhang, andW. Zhang, “Chaotic keystream generator using coupled NDFs
    with parameter perturbing,” in Proc. 5th Int. Conf. on Cryptology and Network Security,
    LCNS, vol. 4301. Springer-Verlag, 2006, pp. 270–285.
    [14] T. Addabbo, M. Alioto, A. Fort, A. Pasini, S. Rocchi, and V. Vignoli, “A class of
    maximum-period nonlinear congruential generators derived from the R´enyi chaotic
    map,” IEEE Trans. Circuits Syst. I, Regular Papaers, vol. 54, no. 4, pp. 816–828,
    2007.
    [15] S. L. Chen, S.M. Chang, T. T. Hwang, andW.W. Lin, “Digital secure-communication
    using robust hyper-chaotic systems,” Int. J. Bifurc. Chaos, vol. 18, no. 11, pp. 3325–
    3339, 2008.
    [16] L.M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett.,
    vol. 64, pp. 821–824, 1990.
    [17] L. Kocarev, J. Szczepanski, J. M. Amigo, and I. Tomovski, “Discrete chaos–I: Theory,”
    IEEE Trans. Circuits Syst. I, Regular Papaers, vol. 53, no. 6, pp. 1300–1309,
    2006.
    [18] W. Stallings, Cryptography and Network Security: Principles and Practices. New-
    Jersey: Pearson Education, 2003.
    [19] Y. Tao, “A survey of chaotic secure communication systems,” International Journal
    of Computational Cognition, vol. 2, no. 2, pp. 81–130, 2004.
    [20] P. Li, Z. Li, W. A. Halang, and G. Chen, “A stream cipher based on a spatiotemporal
    chaotic system,” Chaos, Solitons & Fractals, vol. 32, pp. 1867–1876, 2007.
    [21] D. D. Wheeler, “Problems with chaotic cryptosystems,” Cryptologia, vol. 13, no. 3,
    pp. 243–250, 1989.
    [22] G. ´Alvarez, F. Montoya, M. Romera, and G. Pastor, “Cryptanalyzing a discrete-time
    chaos synchronization secure communication system, Tech. Rep. 3, 2004.
    [23] S. M. Chang, M. C. Li, and W. W. Lin, “Asymptotic synchronization of robust hyperchaotic
    systems and its applications,” Nonlinear Anal. Real World Appl., vol. 10,
    no. 2, pp. 869–880, 2009.
    [24] M. I. Sobhy and A. e. R. Shehata, “Methods of attacking chaotic encryption and countermeasures,”
    IEEE International Conf. on Acoustics, Speech, and Signal Processing,
    vol. 12, pp. 1001–1004, 2001.
    [25] T. S. Parker and L. O. Chua, Practical numerical algorithms for chaotic systems.
    New-York: Springer-Verlag, 1989.
    [26] S. Hu, Y. Zou, J. Hu, and L. Bao, “A synchronous CDMA system using discrete
    coupled-chaotic sequence,” in IEEE Proc. of Southeastcon ’96: Bringing Together
    Education, Science and Technology, 1996, pp. 484–487.
    [27] H. Lu, S. Wang, X. Li, G. Tang, J. Kuang, W. Ye, and G. Hu, “A new spatiotemporally
    chaotic cryptosystem and its security and performance analyses,” Chaos, vol. 14,
    no. 3, pp. 617–629, 2004.
    [28] P. Li, Z. Li, W. A. Halang, and G. Chen, “Analysis of a multiple output pseudorandom-
    bit generator based on a spatiotemporal chaotic system,” Int. J. Bifurcation
    Chaos, vol. 16, pp. 2949–2963, 2006.
    [29] ——, “A multiple pseudorandom-bit generator based on a spatiotemporal chaotic
    map,” Phys. Lett. A, vol. 349, pp. 467–473, 2006.
    [30] A. Rukhin, J. Soto, J. Nechvatal,M. Smid, E. Barker, S. Leigh,M. Levenson,M. Vangel,
    D. Banks, A. Heckert, J. Dray, and S. Vo, “A statistical test suite for random and
    pseudorandom number generators for cryptographic applications,” National Inst. of
    Standards and Technology, Gaithersburg, MD, Tech. Rep. NIST Special Publication
    800-22, 2001.
    [31] P. L’Ecuyer and R. Simard, “Testu01: A C library for empirical testing of random
    number generators,” ACM Trans. Math. Softw., vol. 33, no. 4, pp. 1–22, 2007.
    [32] E. Barreto, B. R. Hunt, C. Grebogi, and J. A. Yorke, “From high dimensional chaos
    to stable periodic orbits: the structure of parameter space,” Phys. Rev. Lett., vol. 78,
    no. 24, pp. 4561–4564, 1997.
    [33] S. M. Chang, M. C. Li, and W. W. Lin, “Asymptotic synchronization of robust hyperchaotic
    systems and its applications,” Nonlinear Anal. Real World Appl., vol. 10,
    no. 2, pp. 869–880, 2009.
    [34] T. Sang, R. Wang, and Y. Yan, “Perturbance-based algorithm to expand cycle length
    of chaotic key stream,” Electrno. Lett., vol. 34, pp. 873–874, 1998.
    [35] S. Callegari, R. Rovatti, and G. Setti, “Embeddable adc-based true random number
    generator for cryptographic applications exploiting nonlinear signal processing and
    chaos,” IEEE Trans. Signal Process., vol. 53, no. 2, pp. 793–805, 2005.
    [36] S. L. Chen, T. T. Hwang, S.M. Chang, andW.W. Lin, “A fast digital chaotic generator
    for secure communication,” Int. J. Bifurc. Chaos, p. to appear, 2010.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE