研究生: |
許育豪 Hsu, Yu-Hao |
---|---|
論文名稱: |
高速網路交換機之設計與實作 The Design and Implementation of High-speed Network Switches |
指導教授: |
張正尚
Chang, Cheng-Shang 邱瀞德 Chiu, Ching-Te 吳仁銘 Wu, Jen-ming 徐碩鴻 Hsu, Shuo-Hung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 118 |
中文關鍵詞: | 網路交換機 、效能百分百 、可擴充性 |
外文關鍵詞: | Network Switch, 100% Throughput, Scability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近來光纖技術的發展,使得建立一個高速的網路交換機更顯得重要。現今市售的交換機都是建構在共享記憶體的基礎上,記憶體的存取速度便成了交換機系統的瓶頸,本篇論文乃設計與實現兩種突破性的交換機,以期能應用於未來光纖普及的高速網路。
第一種架構乃是基於本團隊所提出的負載平衡式布可夫-范紐曼交換機(Load Balanced Birkhoff-von Neumann Switch)。理論上已證明此架構可達效能百分百(100% throughput)的傳輸品質。此前瞻性架構的好處是來自於架構本身的可擴充性(scalability),只要我們將4x4 埠的交換機實現,便能以此為單元建構出64x64、512x512 或更高埠的骨幹級交換器。本論文除了介紹核心的交換機數位電路,亦包含與外界溝通的類比SERDES (serializer-deserializer)介面,並介紹如何整合成混合性的系統晶片。最後並介紹此架構的第二代高速交換機晶片,說明如何將此交換機架構直接用射頻電路實現。
我們更進一步提出第二種架構:結合輸入及交叉點佇列交換機(Combinedinput and crosspoint queueing Switch),提出使用動態方框演算法以期達到百分百效能下對數延遲(O(logN) delay)的可能性並且提供其理論驗證。此外,此種結合輸入及交叉點佇列交換機在單一傳送交通下每個交叉點只需要兩個封包大小的佇列。不同於輸入佇列交換機,動態方框演算法在多重傳送的交通設定下依舊可以達到效能百分百,而僅需增加每個交叉點的佇列大小。
There is an urgent need to built high speed switches that scale with the transmission speed of fiber optics. Most switches in the current market are based on the so-called shared memory switch architecture. As the speed of fiber optics advances, the memory access speed becomes a bottleneck.
A breakthrough in high-speed switch is the load balanced Birkhoff-von Neumann switch. It is proposed to resolve the memory access conflict and yield 100% throughput with high scalability. We implement the digital core of the load balanced switch in first, and then develop the analog SERDES interface to reduce the switch IC pin counts. The mixed-signal design of the switch system is then integrated
successfully. In the next generation, we also implement the switch IC directly in RF domain without the use of SERDES interfaces to achieve low propagation delay and high scalability.
We also propose the Combined Input and Crosspoint Queueing (CICQ) switch with the dynamic frame sizing algorithm for the possibility of O(logN) delay. It is formally shown that such the CICQ switch indeed achieves 100% throughput for certain Poisson-like traffic models. Moreover, such a CICQ switch only requires a two-cell buffer at each crosspoint when there is only unicast traffic. Unlike input-buffered switches, the dynamic frame sizing algorithm also achieves 100% throughput in the setting of multicast traffic. This is done at the cost of increasing the buffer size at each crosspoint.
[1]. C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switch, part I: one-stage buffering,” Computer Communications, Vol. 25, pp. 611-622, 2002.
[2]. C. S. Chang, D. S. Lee and C. M. Lien, “Load balanced Birkhoff-von Neumann switch, part II: Multi-stage buffering,” Computer Communications, Vol. 25, pp. 623-634, 2002.
[3]. Keslassy, I., Shang-Tse Chuang; McKeown, N., “A loadbalanced switch with arbitrary number of line cards,” Infocom 2004, pp. 2007-1026, March 2004.
[4]. Widmer, A.X&Franaszek, P.A., “A DC-Balanced, Partitioned-Block, 8/10B Transmission Code,” IBM J. Res. Develop., Vol. 27, No. 5. September 1983.
[5]. Arekapudi, S., Shang-Tse Chuang, Keslassy, I., McKeown, N., “Using hardware to configure a load-balanced switch,” Micro, IEEE, Volume 25, pp. 70-78, Jan.-Feb. 2005.
[6]. Yorozu, S.; Hashimoto, Y.; Kameda, Y.; Terai, H.; Fujimaki, A.; Yoshikawa, N., ” A 40 GHz clock 160 Gb/s 4/spl times/4 switch circuit using single flux quantum technology for high-speed packet switching systems,” High Performance Switching and Routing, 2004. HPSR. 2004 Workshop on 2004 pp.20-23
[7] T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE Journal of Solid-State Circuit, vol. 40, no. 12, pp. 2633-2645, December 2005.
[8] Y. Guo, Z. Zhang, W. Hu, and L. Yang, “CMOS multiplexer and demultiplexer for gigabit Ethernet,” in Proceedings IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions, vol. 1, Chengdu, China, June 2002, pp. 819-823.
[9] K. Ishii, H. Nosaka, M. Ida, K. Kurishima, S. Yamahata, T. Enoki, T. Shibata, and E. Sano, “4-bit multiplexer/demultiplexer chip set for 40-Gbit/s optical communication systems,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2181-2187, November 2003.
[10] W.-H. Zhao, Z.-G. Wang, Z. Shen, W. Wu, and E. Zhu, “A 3.125-Gb/s CMOS transmitter for serial data communications,” in Proceedings IEEE International Conference on ASIC, vol. 2, Beijing, China, October 2003, pp. 1033-1036.
[11] J. Lu, L. Tian, H. Chen, T. Xie, Z. Chen, and Z. Wang, “Design techniques of CMOS SCL circuits for Gb/s applications,” in Proceedings IEEE International Conference on ASIC, Shanghai, China, October 2001, pp. 559-562.
[12] B. Razavi, Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill, 1999.
[13] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE Journal of Solid-State Circuits, vol. 34, no. 12, pp. 1951-1960, December 1999.
[14] C.-T. Chiu, J.-M. Wu, S.-H. Hsu, M.-S. Kao, C.-H. Jen, and Y. Hsu, “A 10Gb/s wide-band current-mode logic I/O interface for high-speed interconnect in 0.18μm CMOS technology,” in Proceedings IEEE International SOC Conference, Washington DC, USA, September 2005, pp. 257-260.
[15] A. L. Coban, M. H. Koroglu, and K. A. Ahmed, “A 2.5-3.125-Gb/s quad transceiver with second-order analog DLL-based CDRs,” IEEE Journal of Solid-State Circuits, vol. 40, no. 9, pp. 1940-1947, September 2005.
[16] J. Kim, J. Yang, S. Byun, H. Jun, J. Park, C. S. G. Conroy, and B. Kim, “A four-channel 3.125-Gb/s/ch CMOS serial-link transceiver with a mixed-mode adaptive equalizer,” IEEE Journal of Solid-State Circuits, vol. 40, no. 2, pp. 462-471, February 2005.
[17] C. T. Chiu, Y. H. Hsu, M. S. Kao, H. C. Tzeng, M. C. Du, P. L. Yang, M. H. Lu, Fanta Chen, H. Y. Lin, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A scalable load balanced Birkhoff-von Neumann symmetric TDM switch IC for high-speed networking applications,” in proceedings IEEE International Symposium on Circuits and Systems (ISCAS’07), New Orleans, 2007, pp. 2754-2757.
[18] Y. H. Hsu, M. H. Lu, P. L. Yang, F. T. Chen, Y. H. Li, M. S. Kao, C. H. Lin, C. T. Chiu, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A 28Gbps 4×4 switch with low jitter SerDes using area-saving RF model in 0.13μm CMOS technology,” in proceedings IEEE International Symposium on Circuits and Systems (ISCAS’08), Seattle, 2008, pp. 3086-3089.
[19] M. J. Karol, M. G. Hluchyj, and S. P. Morgan, “Input versus output queueing on a space-division packet switch,” IEEE Transactions on Communications, vol. 35, pp. 1347-1356, Dec. 1987.
[20] T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High-speed switch scheduling for local-area networks,” ACM Transactions on Computer Systems, vol. 11, pp. 319-352, 1993.
[21] Y. Tamir, and H.C. Chi, “Symmetric crossbar arbiters for VLSI communication switches,” IEEE Transactions on Parallel and Distributed Systems, vol. 4, pp. 13-27, 1993.
[22] N. McKeown, “Scheduling algorithms for input-queued cell switches,” Ph.D. thesis, University of California at Berkeley, 1995.
[23] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% throughput in an input-queued switch,” IEEE Transactions on Communications, vol. 47, pp. 1260-1267, 1999.
[24] A. Mekkittikul, and N. McKeown, “A practical scheduling algorithm to achieve 100% throughput in input-queued switches,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’98), San Francisco, 1998, pp. 792-799.
[25] J. G. Dai, and B. Prabhakar, “The throughput of data switches with and without speedup,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’00), Tel-Aviv, Israel, 2000, pp. 556-564.
[26] Y. Li, S. S. Panwar, and H. J. Chao, “On the performance of a dual round-robin switch,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’01), Anchorage, 2001, pp. 1688-1697.
[27] C. S. Chang, D. S. Lee, and Y. J. Shih, “Mailbox switch: a scalable two-stage switch architecture for conflict resolution of ordered packets,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’04), Hong Kong, 2004, pp. 1995-2006.
[28] C. S. Chang, D. S. Lee and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, vol. 25, pp. 611-622, Apr. 2002.
[29] Y. Shen, S. Jiang, S. S. Panwar, and H. J. Chao, “Byte-focal: a practical load-balanced switch,” in Proceedings IEEE Workshop on High Performance Switching and Routing (HPSR’05), Hong Kong, 2005, pp. 6-12.
[30] J. J. Jaramillo, F. Milan, and R. Srikant, “Padded frames: a novel algorithm for stable scheduling in load-balanced switches,” in Proceedings IEEE Conference on Information Sciences and Systems (CISS’06), Princeton, 2006, pp. 1732-1737.
[31] I. Keslassy, and N. McKeown, “Maintaining packet order in two-stage switches,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’02), New York, 2002, pp. 1032-1041.
[32] I. Keslassy, S. T. Chuang, K. Yu, D. Miller, M. Horowitz, O. Solgaard, and N. McKeown, “Scaling Internet routers using optics,” in Proceedings ACM Special Interest Group on Data Communication Conference (SIGCOMM’03), Karlsruhe, Germany, 2003. pp. 189-200.
[33] C. L. Yu, C. S. Chang, and D. S. Lee, “CR switch: a load-balanced switch with contention and reservation,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07), Anchorage, 2007, pp. 1361-1369.
[34] I. Keslassy, S. T. Chuang, and N. McKeown, "A Load-balanced switch with an arbitrary number of linecards," in Proceedings IEEE International Conference on Computer Communications (INFOCOM’04), Hong Kong, 2004, pp. 2007-2016.
[35] S. Arekapudi, S. T. Chuang, I. Keslassy, N. McKeown, “Using hardware to configure a load-balanced switch,” IEEE Micro, vol. 25, pp. 92-103, 2005.
[36] S. Arekapudi, S. T. Chuang, I. Keslassy, and N. McKeown, “Configuring a load-balanced switch in hardware,” in Proceedings IEEE Symposium on High Performance Interconnects (HOTI’05), Stanford University, 2005, pp. 48-53.
[37] J. Gripp, J. E. Simsarian, P. Bernasconi, J. D. Le Grange, L. Zhang, L. Buhl, D. Stiliadis, D. T. Neilson, and M. Zirngibl, “Load-balanced optical packet router based on 40 Gb/s wavelength converters and time buffers,” in Proceedings IEEE European Conference on Optical Communication (ECOC’05), Glasgow, Scotland, 2005, pp. 51-52.
[38] A. X. Widmer, and P. A. Franaszek, “A DC-balanced, partitioned- block, 8B/10B transmission code,” IBM Journal of Research and Development, vol. 27, pp. 440, 1983.
[39] Y. Guo, Z. Zhang, W. Hu, and L. Yang, “CMOS multiplexer and demultiplexer for gigabit Ethernet,” in proceedings IEEE International Conference on Communications, Circuits and Systems and West Sino Expositions (ICCAS’02), Malmoe, Sweden, 2002, pp. 819-823.
[40] J. H. Lu, T. Lei, H. T. Chen, T. T. Xie, Z. H. Chen, and Z. G. Wang, “Design techniques of CMOS SCL circuits for Gb/s applications,” in proceedings IEEE International Conference on ASIC (ASICON’01), Shanghai, China, 2001, pp. 559-562.
[41] P. Larsson, “A 2-1600-MHz CMOS clock recovery PLL with low-Vdd capability,” IEEE Journal of Solid-State Circuits, vol. 34, pp. 1951-1960, Dec. 1999.
[42] C. T. Chiu, J. M. Wu, S. H. Hsu, M. S. Kao, C. H. Jen, and Y. S. Hsu, “A 10Gb/s wide-band current-mode logic I/O interface for high-speed interconnect in 0.18μm CMOS technology,” in proceedings IEEE International SOC Conference (SOCC’05), Washington D.C., 2005, pp. 257-260.
[43] A. L. Coban, M. H. Koroglu, and K. A. Ahmed, “A 2.5-3.125Gb/s quad transceiver with second order analog DLL based CDRs,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 1940-1947, Sep. 2005.
[44] J. Kim, J. Yang, S. Byun, H. Jun, J. Park, C.S.G. Conroy, and B. Kim, “A four-channel 3.125Gb/s/ch CMOS serial-link transceiver with a mixed-mode adaptive equalizer,” IEEE Journal of Solid-State Circuits, vol. 40, pp. 462-471, Feb. 2005.
[45] Y. Frans, N. Nguyen, B. Daly, Y. Wang, D. Kim, T. Bystrom, D. Olarte, and K. Donnelly, “A 1-4 Gbps Quad Transceiver Cell using PLL with Gate Current Leakage Compensator in 90nm CMOS,” in proceedings IEEE Symposium on VLSI Circuits Digest of Technical Papers, 2004, pp. 134-137.
[46] K. Y. K. Chang, J. Wei, C. Huang, S. Li, K. Donnelly, M. Horowitz, Y. Li, and S. Sidiropoulos, “A 0.4–4-Gb/s CMOS Quad Transceiver Cell Using On-Chip Regulated Dual-Loop PLLs,” IEEE Journal of Solid-State Circuits, vol. 38, pp. 747-754, May 2003.
[47] C. S. Chang, D. S. Lee, and Y. S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, vol. 25, pp. 611-622, April 2002.
[48] C. S. Chang, D. S. Lee, Y. J. S, and C. L. Yu, “Mailbox switch: a scalable two-stage switch architecture for conflict resolution of ordered packets,” IEEE Transactions on Communications, vol. 56, pp. 136-149, January 2008.
[49] C. L. Yu, C. S. Chang, and D. S. Lee, “CR switch: a load-balanced switch with contention and reservation,” IEEE/ACM Transactions on Networking, accepted for future publication, 2009.
[50] Texas Instruments 10 Gigabit (XAUI) Ethernet Transceivers Datasheet: http://focus.ti.com/lit/ds/symlink/tlk3138.pdf.
[51] XILINX RocketIO□ Transceiver User Guide:
www.xilinx.com/support/documentation/user_guides/ug024.pdf
[52] P. Heydari and R. Mohanavelu, “Design of ultrahigh-speed low-voltage CMOS CML buffers and latches,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, pp. 1081–1093, Oct. 2004.
[53] T. Otsuji, M. Yoneyama, K. Murata, and E. Sano, “A super-dynamic flip–flop circuit for broadband applications up to 24 Gbit/s utilizing production-level 0.2-um GaAs MESFETS,” IEEE Journal of Solid-state Circuits, vol. 32, pp. 1357–1362, Sep. 1997.
[54] H. D. Wohlmuth and D. Kehrer, “A low power 13-Gb/s 27-1 pseudo random bit sequence generator IC in 120 nm bulk CMOS,” in proceedings IEEE Symposium on Integrated Circuits and Systems Design, Pernambuco, Brazil, Sep. 7-11, 2004, pp. 233–236.
[55] U.S. patent: M. Kao, C. Jen, J. Wu, C. Chiu, and S. Hsu, “Transmission circuit for use in input/output interface,” No. US20070069769A1.
[56] C. T. Chiu, Y. H. Hsu, M. S. Kao, H. C. Tzeng, M. C. Du, P. L. Yang, M. H. Lu, F. T. Chen, H. Y. Lin, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A Scalable Load Balanced Birkhoff-von Neumann Symmetric TDM Switch IC for High-Speed Networking Applications,” in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS’07), New Orleans, Louisiana, USA, May 27-30, 2007, pp. 2754-2757.
[57] Y. H. Hsu, M. H. Lu, P. L. Yang, F. T. Chen, Y. H. Li, M. S. Kao, C. H. Lin, C. T. Chiu, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A 28Gbps 4×4 switch with low jitter SerDes using area-saving RF model in 0.13μm CMOS technology,” in Proceedings IEEE International Symposium on Circuits and Systems (ISCAS’08), Seattle, Washington, USA, May 18-21, 2008, pp. 3086-3089.
[58] H. Ahmadi and W. E. Denzel, “A survey of modern high-performance switching techniques,” IEEE Journal on Selected Areas in Communications, vol. 7, pp. 1091–1103, September 1989.
[59] M. A. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Multicast traffic in input-queued switches: optimal scheduling and maximum throughput,” IEEE/ACM Transactions on Networking, vol. 11, pp. 465–477, June 2003.
[60] C.-S. Chang, “Sample path large deviations and intree networks,” Queueing Systems, vol. 20, pp. 7–36, March 1995.
[61] C.-S. Chang, Performance Guarantees in Communication Networks, London: Springer-Verlag, 2000.
[62] C.-S. Chang, W.-J. Chen, and H.-Y. Huang, “Birkhoff-von Neumann input buffered crossbar switches,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’00), Tel Aviv, Israel, March 26–30, 2000, pp. 1614–1623.
[63] C.-S. Chang, D.-S. Lee, and Y.-S. Jou, “Load balanced Birkhoff-von Neumann switches, part I: one-stage buffering,” Computer Communications, vol. 25, pp. 611–622, April 2002.
[64] N. Chrysos and M. Katevenis, “Weighted fairness in buffered crossbar scheduling,” in Proceedings IEEE Workshop on High Performance Switching and Routing (HPSR’03), Torino, Italy, June 24–27, 2003, pp. 17–22.
[65] N. Chrysos and M. Katevenis, “Scheduling in non-blocking buffered three-stage switching fabrics,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’06), Barcelona, Spain, April 23–29, 2006, pp. 1–13.
[66] S.-T. Chuang, S. Iyer, and N. McKeown, “Practical algorithms for performance guarantees in buffered crossbars,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’05), Miami, FL, USA, March 13–17, 2005, pp. 981–991.
[67] Z. Dong and R. Rojas-Cessa, “Long round-trip time support with sharedmemory crosspoint buffered packet switch,” in Proceedings IEEE Symposium on High Performance Interconnects (HOTI’05), Stanford University, Palo Alto, CA, USA, August 6–8, 2005, pp. 138–143.
[68] S.-M. He, S.-T. Sun, H.-T. Guan, Q. Zheng, Y.-J. Zhao, and W.Gao, “On guaranteed smooth switching for buffered crossbar switches,” to appear in IEEE/ACM Transactions on Networking.
[69] P. Giaccone, E. Leonardi and D. Shah, “On the maximal throughput of networks with finite buffers and its application to buffered crossbars,” Proceedings IEEE INFOCOM, 2005.
[70] T. Javidi, R. Magill, and T. Hrabik, “A high-throughput scheduling algorithm for a buffered crossbar switch fabric,” in Proceedings IEEE International Conference on Communications (ICC’01), Helsinki, Finland, June 11–14, 2001, pp. 1586–1591.
[71] F. P. Kelly, “Notes on effective bandwidths,” Stochastic Networks: Theory and Applications, pp. 141–168, Oxford University Press, 1995.
[72] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the self-similar nature of Ethernet traffic,” IEEE/ACM Transactions on Networking, vol. 2, pp. 1–15, February 1994.
[73] S. Y. R. Li, R. W. Yeung, and N. Cai, “Linear network coding,” IEEE Transactions on Information Theory, vol. 49, pp. 371–381, February 2003.
[74] R. B. Magill, C. E. Rohrs, and R. L. Stevenson, “Output-queued switch emulation by fabrics with limited memory,” IEEE Journal on Selected Areas in Communications, vol. 21, pp. 606–615, May 2003.
[75] M. Nabeshima, “Performance evaluation of a combined input- and crosspoint-queued switch,” IEICE Transactions on Communications, vol. E83-B, pp. 737–741, March 2000.
[76] M. J. Neely, E. Modiano, and Y.-S. Cheng, “Logarithmic delay for N × N packet switches under the crossbar constraint,” IEEE/ACM Transactions on Networking, vol. 15, pp. 657–668, June 2007.
[77] R. Rojas-Cessa, E. Oki, Z. Jing, and H. J. Chao, “CIXB-1: combined input-one-cell-crosspoint buffered switch,” in Proceedings IEEE Workshop on High Performance Switching and Routing (HPSR’01), Dallas, TX, USA, May 29–31, 2001, pp. 324–329.
[78] Y. Shen, S. S. Panwar, H. J. Chao, “SQUID: A practical 100% throughput scheduler for crosspoint buffered switches,” Proceedings of IEEE High Performance Switching and Routing Workshop, 2008.
[79] J. Turner, “Strong performance guarantees for asynchrnonous crossbar schedulers,” Proceedings of IEEE INFOCOM, 2006.
[80] I. Widjaja and I. Saniee, “Simplified layering and flexible bandwidth with TWIN,” in Proceedings ACM Special Interest Group on Data Communication Conference (SIGCOMM’04), Portland, OR, USA, August 30–September 3, 2004, pp. 13–20.
[81] K. Yoshigoe, K. Christensen, and A. Jocob, “The RR/RR CICQ switch: hardware design for 10-Gbps link speed,” in Proceedings IEEE International Conference on Performance, Computing, and Communications (IPCCC’03), Phoenix, AZ, USA, April 9–11, 2003, pp. 481–485.
[82] X. Zhang and L. N. Bhuyan, “An efficient algorithm for combinedinput- crosspoint-queued (CICQ) switches,” in Proceedings IEEE Global Telecommunications Conference (GLOBECOM’04), Dallas, TX, USA, November 29–December 3, 2004, pp. 1168–1173.
[83] X. Zhang, S. R. Mohanty, and L. N. Bhuyan “Adaptive max-min fair scheduling in buffered crossbar switches without speedup,” in Proceedings IEEE International Conference on Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6–12, 2007, pp. 454–462.
[84] C. T. Chiu, C. C. Chang, S. M. Chen, H. C. Tzeng, M. C. Du, Y. H. Hsu, J. M. Wu , and K. M. Feng, “A 20Gbps scalable load-balanced TDM switch with CODEC for high speed networking applications,” in Proceedings IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC’05), Canada, 2005, pp. 508-513.
[85] Y. H. Hsu, M. H. Lu, P. L. Yang, F. T. Chen, Y. H. Li, M. S. Kao, C. H. Lin, C. T. Chiu, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A quarter-rate 2.56/3.2Gbps 16/20:1 SERDES interface in 0.18μm CMOS Technology,” International Journal of Electrical Engineering (IJEE), pp. 39-49, February 2009.
[86] C. H. Hsiao, M. S. Kao, C. H. Jen, Y. H. Hsu, P. L. Yang, C. T. Chiu, J. M. Wu, S. H. Hsu, and YarSun Hsu, “A 3.2Gbps CML transmitter with 20:1 multiplexer in 0.18 CMOS technology,” in Proceedings IEEE International Conference on Mixed Design of Integrated Circuits and System (MIXDES’06), Poland, 2006, pp. 179-183.
[87] Y. H. Hsu, Y. S. Lin, C. T. Chiu, J. M. Wu, S. H. Hsu, F. T. Chen, M. S. Kao, and Y. S. Hsu “A 32Gbps Low Propagation Delay 4×4 Switch IC for Feedback-Based System in 0.13μm CMOS Technology,” accepted in proceedings IEEE International Symposium on Circuits and Systems (ISCAS’10).
[88] C. S. Chang, Y. H. Hsu, J. Cheng, and D. S. Lee, “A dynamic frame sizing algorithm for CICQ switches with 100% throughput,” in proceedings IEEE International Conference on Computer Communications (INFOCOM’09).