研究生: |
李岳穎 Li, Yue-Ying |
---|---|
論文名稱: |
利用摻鐿光纖啁啾放大器架設高功率飛秒雷射系統之研究 High-power Femtosecond Pulse Generation in a Chirped-Pulse Amplified Ytterbium-Doped Fiber Laser System |
指導教授: |
潘犀靈
Pan, Ci-Ling |
口試委員: |
謝文峰
Wen-Feng Hsieh 李晁逵 Chao-Kuei Lee |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 啁啾放大器 、光纖雷射 、光纖放大器 、二倍頻 |
外文關鍵詞: | CPA, ANDi fiber laser |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高功率超快光纖放大器,常伴隨著嚴重的非線性效應,這些非線性效應將會大幅降低光纖放大器輸出光特性。本論文,我們設計及架設一台飛秒級高功率摻鐿光纖放大器之啁啾脈衝放大系統(波長=1064奈米)。本實驗採用正色散被動鎖模光纖雷射,輸出光源頻寬為9奈米,其對應轉換極限脈衝寬度為185飛秒,然其輸出光脈衝為11.7皮秒,因此其輸出種子雷射為高啁啾脈衝光。託其種子雷射之特性,其輸出光脈衝已展延60倍,故在本實驗中無需使用脈衝展延器。其啁啾脈衝經7公尺的摻鐿光纖放大後,平均功率可達1瓦,脈衝寬度為20皮秒(重覆率~15 MHz)。本系統輸出光強受限於光纖放大器之非線效應,特別是受激拉曼輻射最嚴重,將導致訊號光強增益降低。利用光柵將之脈衝壓縮,可產生尖峰功率達25 千瓦且脈衝寬度約為900飛秒,其壓縮損耗約為50%。最後,我們利用類型一臨界相位匹配三硼酸鋰晶體,產生波長為532奈米之二階諧波。當操作在最佳聚焦參數為1.5時,其入射壓縮脈衝光在370毫瓦平均功率的情形下可得到88毫瓦的綠光,同時轉換效率達23%。此倍頻轉換效率相較先前10%之皮秒雷射系統尤佳。在未來,本實驗將利用二級纖核直徑為30微米的摻鐿光纖放大器亦或於放大器前提升其脈衝展延能力,以達到更進一步的光放大輸出。
In this thesis, we demonstrated the chirped pulse amplification (CPA) of a high-power ytterbium-doped fiber amplifier at wavelength of 1064 nm without a stretcher. The all-normal dispersion (ANDi) passively mode-locked fiber laser is used to generate highly chirped seed pulse. Therefore, the pulse stretcher could be optional. The spectrum bandwidth of our ANDi fiber laser is 9 nm which can support 185-fs-width pulses. The actual output pulses width is 11.7 ps. In this case, it is equivalent to -60 times stretching of the seed pulses to reduce the peak power. After amplification, the output signal power can achieve ~1 W with pulse width of 20 picosecond (repetition rate ~ 15 MHz). The output power is basically limited by stimulated Raman scattering (SRS), which reduces the gain of the signal power. After compression by the gratings pair, the output peak power was shown to be 25 kW with a compression ratio ~ 25 (~900 fs). In the meantime, the power loss of the compressor is around 50%. Further, the compressed-pulse was frequency doubled by a type-I critically phase-matched (CPM) Lithium Triborate (LBO) crystal with optimal focal parameter of ξ~ 1.5. With 370 mW of fundamental light, we can generate 88 mW of green output (λ= 532 nm) with conversion efficiency of 23% which is much higher than that achieved with our picosecond laser system (10%). Power scaling is possible but requires introducing second amplification stage with larger mode-field-diameter active fiber or increasing the stretching ratio before the amplification.
[1] A. Ancona, S. Döring, C. Jauregui, F. Röser, J. Limpert, S. Nolte, et al., "Femtosecond and picosecond laser drilling of metals at high repetition rates and average powers," Optics Letters, vol. 34, pp. 3304-3306, 2009/11/01 2009.
[2] G. Shannon, "Microwelding demands new laser tools.," Laser Focus World, vol. 47, Oct. 1 2011.
[3] B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tünnermann, "Femtosecond, picosecond and nanosecond laser ablation of solids," Applied Physics A, vol. 63, pp. 109-115, 1996/08/01 1996.
[4] J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, et al., "High-power femtosecond Yb-doped fiber amplifier," Optics Express, vol. 10, pp. 628-638, 2002/07/15 2002.
[5] P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, et al., "High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs," Optics Express, vol. 14, pp. 9611-9616, 2006/10/16 2006.
[6] G. P. Agrawal, Nonlinear Fiber Optics, 4th ed ed., 2007.
[7] C. Jauregui, J. Limpert, and A. Tunnermann, "High-power fibre lasers," Nat Photon, vol. 7, pp. 861-867, 11//print 2013.
[8] R. L. Farrow, D. A. V. Kliner, G. R. Hadley, and A. V. Smith, "Peak-power limits on fiber amplifiers imposed by self-focusing," Optics Letters, vol. 31, pp. 3423-3425, 2006/12/01 2006.
[9] D. N. Schimpf, T. Eidam, E. Seise, S. Hädrich, J. Limpert, and A. Tünnermann, "Circular versus linear polarization in laser-amplifiers with Kerr-nonlinearity," Optics Express, vol. 17, pp. 18774-18781, 2009/10/12 2009.
[10] J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, et al., "High-power rod-type photonic crystal fiber laser," Optics Express, vol. 13, pp. 1055-1058, 2005/02/21 2005.
[11] F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, et al., "High average power large-pitch fiber amplifier with robust single-mode operation," Optics Letters, vol. 36, pp. 689-691, 2011/03/01 2011.
[12] F. Jansen, F. Stutzki, C. Jauregui, J. Limpert, and A. Tünnermann, "Avoided crossings in photonic crystal fibers," Optics Express, vol. 19, pp. 13578-13589, 2011/07/04 2011.
[13] D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Optics Communications, vol. 56, pp. 219-221, 12/1/ 1985.
[14] C.-H. Lin, Y.-J. You, C.-C. Chung, A. Zaytsev, F.-H. Tsai, C.-L. Wang, et al., "Experimental and Theoretical Study of the Generation and Non-Linear Conversion of Picosecond Bursts from an Amplified Ytterbium-Doped Fiber Laser System," Fiber and Integrated Optics, vol. 33, pp. 68-84, 2014/01/02 2014.
[15] S. Teich, Fundamental of Photonics, 2nd edition ed., 1991.
[16] L. G. Ursula Keller, Ultrafast laser physics (lecture note).
[17] U. Keller, D. A. B. Miller, G. D. Boyd, T. H. Chiu, J. F. Ferguson, and M. T. Asom, "Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry?Perot saturable absorber," Optics Letters, vol. 17, pp. 505-507, 1992/04/01 1992.
[18] C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," Journal of the Optical Society of America B, vol. 16, pp. 46-56, 1999/01/01 1999.
[19] F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, "Generation of 36-femtosecond pulses from a ytterbium fiber laser," Optics Express, vol. 11, pp. 3550-3554, 2003/12/29 2003.
[20] F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Physical Review Letters, vol. 92, p. 213902, 05/27/ 2004.
[21] C. R. E. Baer, C. Kränkel, C. J. Saraceno, O. H. Heckl, M. Golling, R. Peters, et al., "Femtosecond thin-disk laser with 141 W of average power," Optics Letters, vol. 35, pp. 2302-2304, 2010/07/01 2010.
[22] P. Russbueldt, T. Mans, J. Weitenberg, H. D. Hoffmann, and R. Poprawe, "Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier," Optics Letters, vol. 35, pp. 4169-4171, 2010/12/15 2010.
[23] T. Eidam, J. Rothhardt, F. Stutzki, F. Jansen, S. Hädrich, H. Carstens, et al., "Fiber chirped-pulse amplification system emitting 3.8 GW peak power," Optics Express, vol. 19, pp. 255-260, 2011/01/03 2011.
[24] A. Galvanauskas, G. C. Cho, A. Hariharan, M. E. Fermann, and D. Harter, "Generation of high-energy femtosecond pulses in multimode-core Yb-fiber chirped-pulse amplification systems," Optics Letters, vol. 26, pp. 935-937, 2001/06/15 2001.
[25] N. K. D. K. Lu, "Spectroscopic properties of Yb-doped silica glass," Journal of Applied Physics, vol. 91, pp. 576-581, 15 Jan 2002.
[26] R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," Quantum Electronics, IEEE Journal of, vol. 33, pp. 1049-1056, 1997.
[27] N. P. Barnes and B. M. Walsh, "Amplified spontaneous emission-application to Nd:YAG lasers," Quantum Electronics, IEEE Journal of, vol. 35, pp. 101-109, 1999.
[28] E. Hecht, Optics, 4th ed. ed.: Addison Wesley.
[29] F. Shimizu, "Frequency Broadening in Liquids by a Short Light Pulse," Physical Review Letters, vol. 19, pp. 1097-1100, 11/06/ 1967.
[30] C. V. R. a. K. S. Krishnan, "A New Type of Secondary Radiation," Nature, vol. 121, pp. 501-502, 1928.
[31] E. P. I. R. H. Stolen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett., vol. 20, p. 62, 1972.
[32] E. Treacy, "Optical pulse compression with diffraction gratings," Quantum Electronics, IEEE Journal of, vol. 5, pp. 454-458, 1969.
[33] A. M. Johnson, R. H. Stolen, and W. M. Simpson, "80× single‐stage compression of frequency doubled Nd:yttrium aluminum garnet laser pulses," Applied Physics Letters, vol. 44, pp. 729-731, 1984.
[34] O. E. Martinez, J. P. Gordon, and R. L. Fork, "Negative group-velocity dispersion using refraction," Journal of the Optical Society of America A, vol. 1, pp. 1003-1006, 1984/10/01 1984.
[35] O. E. Martinez, "3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region," Quantum Electronics, IEEE Journal of, vol. 23, pp. 59-64, 1987.
[36] T. F. R. Wolleschensky, R. Sauerbrey, U. Simon, "Characterization and optimization of a laser-scanning microscope in the femtosecond regime," Applied Physics B, vol. 67, pp. 87-94, July 1998.
[37] M. Y. Shverdin, F. Albert, S. G. Anderson, S. M. Betts, D. J. Gibson, M. J. Messerly, et al., "Chirped-pulse amplification with narrowband pulses," Optics Letters, vol. 35, pp. 2478-2480, 2010/07/15 2010.
[38] R. G. Gould, "The LASER, Light Amplification by Stimulated Emission of Radiation," June 1959.
[39] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, "Generation of Optical Harmonics," Physical Review Letters, vol. 7, pp. 118-119, 08/15/ 1961.
[40] J. D. Bierlein and H. Vanherzeele, "Potassium titanyl phosphate: properties and new applications," Journal of the Optical Society of America B, vol. 6, pp. 622-633, 1989/04/01 1989.
[41] B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, "Study of KTiOPO4 gray-tracking at 1064, 532, and 355 nm," Applied Physics Letters, vol. 65, pp. 2401-2403, 1994.
[42] B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, "Optical studies of laser-induced gray-tracking in KTP," Quantum Electronics, IEEE Journal of, vol. 35, pp. 281-286, 1999.
[43] D. A. Bryan, R. R. Rice, R. Gerson, H. E. Tomaschke, K. L. Sweeney, and L. E. Halliburton, "Magnesium-Doped Lithium Niobate For Higher Optical Power Applications," Optical Engineering, vol. 24, pp. 241138-241138-, 1985.
[44] W. B. CHEN CHUANGTIAN, JIANG AIDONG, YOU GUIMING, "A NEW-TYPE ULTRAVIOLET SHG CRYSTAL——β-BaB<sub>2</sub>O<sub>4 </sub>," SCIENCE CHINA Chemistry, vol. 28, pp. 235-243, 1985-03-10 1985.
[45] C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, et al., "New nonlinear-optical crystal: LiB3O5," Journal of the Optical Society of America B, vol. 6, pp. 616-621, 1989/04/01 1989.
[46] S. Lin, Z. Sun, B. Wu, and C. Chen, "The nonlinear optical characteristics of a LiB3O5 crystal," Journal of Applied Physics, vol. 67, pp. 634-638, 1990.
[47] F. Xie, B. Wu, G. You, and C. Chen, "Characterization of LiB3O5 crystal for second-harmonic generation," Optics Letters, vol. 16, pp. 1237-1239, 1991/08/15 1991.
[48] G. D. Boyd and D. A. Kleinman, "Parametric Interaction of Focused Gaussian Light Beams," Journal of Applied Physics, vol. 39, pp. 3597-3639, 1968.
[49] W. Haifeng and A. M. Weiner, "Efficiency of short-pulse type-I second-harmonic generation with simultaneous spatial walk-off, temporal walk-off, and pump depletion," Quantum Electronics, IEEE Journal of, vol. 39, pp. 1600-1618, 2003.
[50] Y. Zhang, S. Zhao, D. Li, K. Yang, G. Li, G. Zhang, et al., "Diode-pumped doubly Q-switched mode-locked YVO4/Nd:YVO4 laser with AO and GaAs saturable absorber," Optics Communications, vol. 283, pp. 5121-5125, 12/15/ 2010.
[51] Y. P. Zhang, X. D. Zhao, H. Y. Zhang, L. H. Meng, L. Li, X. F. Li, et al., "High-power continuous wave green beam generation by use of simple linear cavity with side-pumped module," Optics Communications, vol. 283, pp. 5161-5164, 12/15/ 2010.
[52] A. K. Zaytsev, C. L. Wang, C. H. Lin, and C. L. Pan, "Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler," Laser Physics, vol. 21, pp. 2029-2035, 2011/12/01 2011.
[53] A. Chong, W. H. Renninger, and F. W. Wise, "Properties of normal-dispersion femtosecond fiber lasers," Journal of the Optical Society of America B, vol. 25, pp. 140-148, 2008/02/01 2008.
[54] A. M. Weiner, Ultrafast Optics, 2009.
[55] J.-C. M. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Applied Optics, vol. 24, pp. 1270-1282, 1985/05/01 1985.
[56] J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Optics Express, vol. 14, pp. 5103-5113, 2006/06/12 2006.
[57] W. Yong, "Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers," Quantum Electronics, IEEE Journal of, vol. 41, pp. 779-788, 2005.
[58] Z. Zhao, B. M. Dunham, I. Bazarov, and F. W. Wise, "Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier," Optics Express, vol. 20, pp. 4850-4855, 2012/02/27 2012.
[59] Y. Kobayashi, N. Hirayama, A. Ozawa, T. Sukegawa, T. Seki, Y. Kuramoto, et al., "10-MHz, Yb-fiber chirped-pulse amplifier system with large-scale transmission gratings," Optics Express, vol. 21, pp. 12865-12873, 2013/05/20 2013.
[60] S. Breitkopf, A. Klenke, T. Gottschall, H.-J. Otto, C. Jauregui, J. Limpert, et al., "58mJ burst comprising ultrashort pulses with homogenous energy level from an Yb-doped fiber amplifier," Optics Letters, vol. 37, pp. 5169-5171, 2012/12/15 2012.
[61] S. M. Kobtsev, S. V. Kukarin, Y. S. Fedotov, and A. V. Ivanenko, "High-energy femtosecond 1086/543-nm fiber system for nano- and micromachining in transparent materials and on solid surfaces," Laser Physics, vol. 21, pp. 308-311, 2011/02/01 2011.
[62] X. Wang, P. Li, H. Yang, T. Jiang, Y. Ma, Z. Fan, et al., "Microjoule level femtosecond optical pulses with double-cladding fiber-based nonlinear chirped-pulse amplification," Laser Physics, vol. 21, pp. 1941-1944, 2011/11/01 2011.