簡易檢索 / 詳目顯示

研究生: 王天成
Wang, Tien-Cheng
論文名稱: Differential Regulation of Neuronal Differentiation by SH2B1β and SH2B3
SH2B1β 與SH2B3 對於神經分化之調控機制
指導教授: 陳令儀
Chen, Linyi
口試委員: 邱英明
陳怡榮
張兗君
徐瑞洲
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 90
中文關鍵詞: 神經分化細胞黏著作用神經生長因子銜接蛋白信息傳遞
外文關鍵詞: neuronal differentiation, cell adhesion, NGF
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Abstract
    During neurogenesis, cell adhesion and neurotrophic signaling play important
    roles in each differentiation stages. SH2B family proteins were identified as
    adaptor proteins which contain multiple domains, and these proteins were known to
    participate in various cellular responses. In this thesis, we present novel functions
    of two adaptor proteins, SH2B1β and SH2B3. We provide evidence suggesting that
    overexpression of SH2B1β, reduces N□cadherin levels and increased phosphotyrosine
    654 β□catenin, leading to increased nerve growth factor□induced neurite initiation in
    PC12 cells. These findings provide significant new insights into how
    N□cadherin□mediated inter□cellular interactions may influence neurite initiation and
    how SH2B1β may regulate these processes.
    Among SH2B family members, SH2B3 was shown to play an inhibitory role for
    immune system development. Its role in neuronal differentiation is not known.
    We provide evidence showing that overexpression of SH2B3 not only inhibits
    NGF□induced differentiation of PC12 cells but also reduces neurite outgrowth of
    primary cortical neurons. SH2B3 competes for the interaction with TrkA against
    SH2B1β, and thus represses NGF□induced signaling activity, including PLCγ,
    MEK□ERK1/2 and PI3K□AKT pathways. These data demonstrate that SH2B3, unlike
    the other two family members, inhibits neuronal differentiation of PC12 cells and
    primary cortical neurons. Taken together, our findings from this thesis imply the
    differential requirement of N□cadherin□mediated cell□cell adhesion and SH2B family
    proteins during each stages of neuronal differentiation.


    中文摘要
    在神經分化的過程中,細胞黏著作用和細胞內信息傳遞在每個階段都扮演著
    很重要的角色。SH2B蛋白家族是具有多個蛋白模組 (protein domain) 的銜接蛋白
    (adaptor protein),目前已知這些蛋白參與在許多細胞反應當中。在這篇研究報告
    中,我們分別發現了SH2B1β和SH2B3的兩個新作用。其中,我們發現在PC12細胞
    中過量表現SH2B1β會降低細胞黏著分子N□cadherin的表現量、增加β□catenin第654
    號酪胺酸的磷酸化,並且促進神經生長因子 (nerve growth factor, NGF) 所誘導並
    的神經軸生長的起始步驟 (neurite initiation)。這項發現說明了N□cadherin造成的
    細胞間黏著作用如何影響神經軸生長的起始步驟,並且說明了SH2B1β如何調控
    這個過程。
    在SH2B蛋白家族中,已知SH2B3在免疫系統發育的過程中,扮演抑制蛋白的
    角色。但還不知道SH2B3在神經分化過程中的功能。我們發現在過量表現SH2B3
    不僅會抑制神經生長因子誘導的PC12細胞神經分化作用,並且會抑制大腦皮質神
    經的神經軸生長。SH2B3會與SH2B1β競爭TrkA的交互作用,藉此抑制NGF引發的
    PLCγ,MEK□ERK1/2,以及PI3K□AKT的信息傳遞。此實驗結果說明了SH2B3與另外
    兩個蛋白家族成員 (SH2B1, SH2B2) 雖然具有類似的蛋白結構,但反而具有抑制
    PC12細胞和大腦皮質神經分化的作用。綜合以上,由此篇論文可推論出在神經分
    化的各個階段中,對於N□cadherin形成的細胞間黏著作用和各個SH2B蛋白有不同
    的需求性。

    Table of Contents Acknowledgement................................................................................................................... 1 Publication List.......................................................................................................................... 2 Abstract .................................................................................................................................... 3 中文摘要.................................................................................................................................. 4 Introduction .............................................................................................................................. 5 Materials and Methods .......................................................................................................... 14 Antibodies and reagents...................................................................................................... 14 Plasmids.............................................................................................................................. 15 Cell lines and cultures.......................................................................................................... 15 Primary culture of cortical neurons..................................................................................... 16 Neurite outgrowth and measurement of neurite outgrowth velocity................................ 16 Cell aggregation assay ......................................................................................................... 17 RNA interference................................................................................................................. 18 Transient transfection ......................................................................................................... 19 Immunoblotting and immunoprecipitation ........................................................................ 19 GST pull down assays .......................................................................................................... 20 Immunofluorescence and immunohistochemistry ............................................................. 20 Statistical Analysis ............................................................................................................... 21 Animal Handling□Ethics statement ...................................................................................... 22 Chapter 1: The Adaptor protein SH2B1β regulates N□cadherin levels, cell□cell adhesion and nerve growth factor□induced neurite initiation..................................................................... 23 SH2B1β and SH2B1β(R555E) differentially regulate neurite initiation, cell–cell adhesion and N□cadherin levels ......................................................................................................... 24 The increased cell–cell adhesion in PC12□R555E cells is in part Ca2+□dependent ............. 25 Overexpressing N□cadherin reduces NGF□induced neurite initiation............................... 27 Phosphorylation of tyrosine 654 on β□catenin correlates with reduced interaction between N□cadherin and β□catenin ................................................................................... 28 SH2B1β interacts directly or indirectly with N□cadherin................................................... 28 Figures ................................................................................................................................ 31 Chapter 2: The Adaptor Protein SH2B3 (Lnk) Negatively Regulates Neurite Outgrowth of PC12 Cells and Cortical Neurons ............................................................................................ 45 SH2B3 is expressed in rat brain cortex and is a NGF□induced gene.................................. 46 Overexpressing SH2B3 inhibits and reducing SH2B3 increases NGF□induced differentiation of PC12 cells ............................................................................................... 46 SH2B3 down□regulates NGF□ and FGF1□induced signaling ................................................ 47 SH2B3 reduces the interaction between SH2B1β and TrkA.............................................. 49 Carboxyl□termini but not amino□termini of SH2B3 is required for inhibiting NGF□induced neurite initiation of PC12 cells ........................................................................................... 51 SH2B3 inhibits axonal extension of cortical neurons ........................................................ 53 Figures ................................................................................................................................ 55 Discussion............................................................................................................................... 69 Appendix ................................................................................................................................ 76 References.............................................................................................................................. 81

    References
    1. Pulst SM (2003) Neurogenetics: single gene disorders. J Neurol Neurosurg Psychiatry 74: 1608-1614.
    2. Bartzokis G Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Neurobiol Aging 32: 1341-1371.
    3. Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10 Suppl: S10-17.
    4. Galoyan AA, Sarkissian JS, Chavushyan VA, Meliksetyan IB, Avagyan ZE, et al. (2008) Neuroprotection by hypothalamic peptide proline-rich peptide-1 in Abeta25-35 model of Alzheimer's disease. Alzheimers Dement 4: 332-344.
    5. Wood LD, Neumiller JJ, Setter SM, Dobbins EK Clinical review of treatment options for select nonmotor symptoms of Parkinson's disease. Am J Geriatr Pharmacother 8: 294-315.
    6. Frank S Tetrabenazine: the first approved drug for the treatment of chorea in US patients with Huntington disease. Neuropsychiatr Dis Treat 6: 657-665.
    7. Brody DL, Holtzman DM (2008) Active and passive immunotherapy for neurodegenerative disorders. Annu Rev Neurosci 31: 175-193.
    8. Ormerod BK, Palmer TD, Caldwell MA (2008) Neurodegeneration and cell replacement. Philos Trans R Soc Lond B Biol Sci 363: 153-170.
    9. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8: 1454-1468.
    10. Bernhardt R, Matus A (1984) Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol 226: 203-221.
    11. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, et al. (1994) Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature 369: 488-491.
    12. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72: 609-642.
    13. Kiryushko D, Berezin V, Bock E (2004) Regulators of neurite outgrowth: role of cell adhesion molecules. Ann N Y Acad Sci 1014: 140-154.
    14. Harada T, Morooka T, Ogawa S, Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3: 453-459.
    15. Lin WF, Chen CJ, Chang YJ, Chen SL, Chiu IM, et al. (2009) SH2B1beta enhances fibroblast growth factor 1 (FGF1)-induced neurite outgrowth through MEK-ERK1/2-STAT3-Egr1 pathway. Cell Signal 21: 1060-1072.
    16. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407: 802-809.
    17. Yung LY, Tso PH, Wu EH, Yu JC, Ip NY, et al. (2008) Nerve growth factor-induced stimulation of p38 mitogen-activated protein kinase in PC12 cells is partially mediated via G(i/o) proteins. Cell Signal 20: 1538-1544.
    18. Tso PH, Morris CJ, Yung LY, Ip NY, Wong YH (2009) Multiple Gi proteins participate in nerve growth factor-induced activation of c-Jun N-terminal kinases in PC12 cells. Neurochem Res 34: 1101-1112.
    19. Obara Y, Yamauchi A, Takehara S, Nemoto W, Takahashi M, et al. (2009) ERK5 activity is required for nerve growth factor-induced neurite outgrowth and stabilization of tyrosine hydroxylase in PC12 cells. J Biol Chem 284: 23564-23573.
    20. Reuss B, von Bohlen und Halbach O (2003) Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res 313: 139-157.
    21. Partanen J (2007) FGF signalling pathways in development of the midbrain and anterior hindbrain. J Neurochem 101: 1185-1193.
    22. Raballo R, Rhee J, Lyn-Cook R, Leckman JF, Schwartz ML, et al. (2000) Basic fibroblast growth factor (Fgf2) is necessary for cell proliferation and neurogenesis in the developing cerebral cortex. J Neurosci 20: 5012-5023.
    23. Storm EE, Garel S, Borello U, Hebert JM, Martinez S, et al. (2006) Dose-dependent functions of Fgf8 in regulating telencephalic patterning centers. Development 133: 1831-1844.
    24. Sahara S, O'Leary DD (2009) Fgf10 regulates transition period of cortical stem cell differentiation to radial glia controlling generation of neurons and basal progenitors. Neuron 63: 48-62.
    25. Chen CW, Liu CS, Chiu IM, Shen SC, Pan HC, et al. The signals of FGFs on the neurogenesis of embryonic stem cells. J Biomed Sci 17: 33.
    26. Kholodenko BN (2007) Untangling the signalling wires. Nat Cell Biol 9: 247-249.
    27. Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action--and more? Biochem J 388: 393-406.
    28. Huang CH, Cheng JC, Chen JC, Tseng CP (2007) Evaluation of the role of Disabled-2 in nerve growth factor-mediated neurite outgrowth and cellular signalling. Cell Signal 19: 1339-1347.
    29. Lo KY, Chin WH, Ng YP, Cheng AW, Cheung ZH, et al. (2005) SLAM-associated protein as a potential negative regulator in Trk signaling. J Biol Chem 280: 41744-41752.
    30. Marsh HN, Dubreuil CI, Quevedo C, Lee A, Majdan M, et al. (2003) SHP-1 negatively regulates neuronal survival by functioning as a TrkA phosphatase. J Cell Biol 163: 999-1010.
    31. Musatov S, Roberts J, Brooks AI, Pena J, Betchen S, et al. (2004) Inhibition of neuronal phenotype by PTEN in PC12 cells. Proc Natl Acad Sci U S A 101: 3627-3631.
    32. Asai H, Yokoyama S, Morita S, Maeda N, Miyata S (2009) Functional difference of receptor-type protein tyrosine phosphatase zeta/beta isoforms in neurogenesis of hippocampal neurons. Neuroscience 164: 1020-1030.
    33. Blackmore M, Letourneau PC (2006) L1, beta1 integrin, and cadherins mediate axonal regeneration in the embryonic spinal cord. J Neurobiol 66: 1564-1583.
    34. Jacob J, Haspel J, Kane-Goldsmith N, Grumet M (2002) L1 mediated homophilic binding and neurite outgrowth are modulated by alternative splicing of exon 2. J Neurobiol 51: 177-189.
    35. Thelen K, Kedar V, Panicker AK, Schmid RS, Midkiff BR, et al. (2002) The neural cell adhesion molecule L1 potentiates integrin-dependent cell migration to extracellular matrix proteins. J Neurosci 22: 4918-4931.
    36. Dahlin-Huppe K, Berglund EO, Ranscht B, Stallcup WB (1997) Mutational analysis of the L1 neuronal cell adhesion molecule identifies membrane-proximal amino acids of the cytoplasmic domain that are required for cytoskeletal anchorage. Mol Cell Neurosci 9: 144-156.
    37. Cohen NR, Taylor JS, Scott LB, Guillery RW, Soriano P, et al. (1998) Errors in corticospinal axon guidance in mice lacking the neural cell adhesion molecule L1. Curr Biol 8: 26-33.
    38. Sakisaka T, Takai Y (2005) Cell adhesion molecules in the CNS. J Cell Sci 118: 5407-5410.
    39. Muller D, Wang C, Skibo G, Toni N, Cremer H, et al. (1996) PSA-NCAM is required for activity-induced synaptic plasticity. Neuron 17: 413-422.
    40. Cremer H, Chazal G, Carleton A, Goridis C, Vincent JD, et al. (1998) Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule-deficient mice. Proc Natl Acad Sci U S A 95: 13242-13247.
    41. Bukalo O, Fentrop N, Lee AY, Salmen B, Law JW, et al. (2004) Conditional ablation of the neural cell adhesion molecule reduces precision of spatial learning, long-term potentiation, and depression in the CA1 subfield of mouse hippocampus. J Neurosci 24: 1565-1577.
    42. Rutishauser U (1998) Polysialic acid at the cell surface: biophysics in service of cell interactions and tissue plasticity. J Cell Biochem 70: 304-312.
    43. Bonfanti L, Theodosis DT (2009) Polysialic acid and activity-dependent synapse remodeling. Cell Adh Migr 3: 43-50.
    44. Barbas JA, Chaix JC, Steinmetz M, Goridis C (1988) Differential splicing and alternative polyadenylation generates distinct NCAM transcripts and proteins in the mouse. EMBO J 7: 625-632.
    45. Beggs HE, Baragona SC, Hemperly JJ, Maness PF (1997) NCAM140 interacts with the focal adhesion kinase p125(fak) and the SRC-related tyrosine kinase p59(fyn). J Biol Chem 272: 8310-8319.
    46. Pollerberg GE, Burridge K, Krebs KE, Goodman SR, Schachner M (1987) The 180-kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions. Cell Tissue Res 250: 227-236.
    47. Buttner B, Reutter W, Horstkorte R (2004) Cytoplasmic domain of NCAM 180 reduces NCAM-mediated neurite outgrowth. J Neurosci Res 75: 854-860.
    48. Cavallaro U, Niedermeyer J, Fuxa M, Christofori G (2001) N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling. Nat Cell Biol 3: 650-657.
    49. Christensen C, Lauridsen JB, Berezin V, Bock E, Kiselyov VV (2006) The neural cell adhesion molecule binds to fibroblast growth factor receptor 2. FEBS Lett 580: 3386-3390.
    50. Francavilla C, Loeffler S, Piccini D, Kren A, Christofori G, et al. (2007) Neural cell adhesion molecule regulates the cellular response to fibroblast growth factor. J Cell Sci 120: 4388-4394.
    51. Redies C (2000) Cadherins in the central nervous system. Prog Neurobiol 61: 611-648.
    52. Hatta K, Takagi S, Fujisawa H, Takeichi M (1987) Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol 120: 215-227.
    53. Nakagawa S, Takeichi M (1995) Neural crest cell-cell adhesion controlled by sequential and subpopulation-specific expression of novel cadherins. Development 121: 1321-1332.
    54. Nakagawa S, Takeichi M (1998) Neural crest emigration from the neural tube depends on regulated cadherin expression. Development 125: 2963-2971.
    55. Akitaya T, Bronner-Fraser M (1992) Expression of cell adhesion molecules during initiation and cessation of neural crest cell migration. Dev Dyn 194: 12-20.
    56. Shoval I, Ludwig A, Kalcheim C (2007) Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination. Development 134: 491-501.
    57. Radice GL, Rayburn H, Matsunami H, Knudsen KA, Takeichi M, et al. (1997) Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181: 64-78.
    58. Kwiatkowski AV, Weis WI, Nelson WJ (2007) Catenins: playing both sides of the synapse. Curr Opin Cell Biol 19: 551-556.
    59. Suzuki SC, Takeichi M (2008) Cadherins in neuronal morphogenesis and function. Dev Growth Differ 50 Suppl 1: S119-130.
    60. Sadot E, Simcha I, Shtutman M, Ben-Ze'ev A, Geiger B (1998) Inhibition of beta-catenin-mediated transactivation by cadherin derivatives. Proc Natl Acad Sci U S A 95: 15339-15344.
    61. Zhang J, Woodhead GJ, Swaminathan SK, Noles SR, McQuinn ER, et al. Cortical neural precursors inhibit their own differentiation via N-cadherin maintenance of beta-catenin signaling. Dev Cell 18: 472-479.
    62. Hirabayashi Y, Itoh Y, Tabata H, Nakajima K, Akiyama T, et al. (2004) The Wnt/beta-catenin pathway directs neuronal differentiation of cortical neural precursor cells. Development 131: 2791-2801.
    63. Spinsanti P, De Vita T, Caruso A, Melchiorri D, Misasi R, et al. (2008) Differential activation of the calcium/protein kinase C and the canonical beta-catenin pathway by Wnt1 and Wnt7a produces opposite effects on cell proliferation in PC12 cells. J Neurochem 104: 1588-1598.
    64. Williams EJ, Williams G, Howell FV, Skaper SD, Walsh FS, et al. (2001) Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 276: 43879-43886.
    65. Alexander NR, Tran NL, Rekapally H, Summers CE, Glackin C, et al. (2006) N-cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Res 66: 3365-3369.
    66. West-Mays JA, Sivak JM, Papagiotas SS, Kim J, Nottoli T, et al. (2003) Positive influence of AP-2alpha transcription factor on cadherin gene expression and differentiation of the ocular surface. Differentiation 71: 206-216.
    67. van Raamsdonk CD, Tilghman SM (2000) Dosage requirement and allelic expression of PAX6 during lens placode formation. Development 127: 5439-5448.
    68. Qi J, Wang J, Romanyuk O, Siu CH (2006) Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 17: 1261-1272.
    69. Schuman EM, Murase S (2003) Cadherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions. Philos Trans R Soc Lond B Biol Sci 358: 749-756.
    70. Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J (2007) Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 9: 883-892.
    71. Xu G, Craig AW, Greer P, Miller M, Anastasiadis PZ, et al. (2004) Continuous association of cadherin with beta-catenin requires the non-receptor tyrosine-kinase Fer. J Cell Sci 117: 3207-3219.
    72. Qian X, Riccio A, Zhang Y, Ginty DD (1998) Identification and characterization of novel substrates of Trk receptors in developing neurons. Neuron 21: 1017-1029.
    73. Rui L, Herrington J, Carter-Su C (1999) SH2-B is required for nerve growth factor-induced neuronal differentiation. J Biol Chem 274: 10590-10594.
    74. Zhang Y, Zhu W, Wang YG, Liu XJ, Jiao L, et al. (2006) Interaction of SH2-Bbeta with RET is involved in signaling of GDNF-induced neurite outgrowth. J Cell Sci 119: 1666-1676.
    75. Rui L, Carter-Su C (1999) Identification of SH2-bbeta as a potent cytoplasmic activator of the tyrosine kinase Janus kinase 2. Proc Natl Acad Sci U S A 96: 7172-7177.
    76. Ahmed Z, Pillay TS (2001) Functional effects of APS and SH2-B on insulin receptor signalling. Biochem Soc Trans 29: 529-534.
    77. O'Brien KB, O'Shea JJ, Carter-Su C (2002) SH2-B family members differentially regulate JAK family tyrosine kinases. J Biol Chem 277: 8673-8681.
    78. Duan C, Li M, Rui L (2004) SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. J Biol Chem 279: 43684-43691.
    79. Li M, Ren D, Iseki M, Takaki S, Rui L (2006) Differential role of SH2-B and APS in regulating energy and glucose homeostasis. Endocrinology 147: 2163-2170.
    80. Ren D, Li M, Duan C, Rui L (2005) Identification of SH2-B as a key regulator of leptin sensitivity, energy balance, and body weight in mice. Cell Metab 2: 95-104.
    81. Song W, Ren D, Li W, Jiang L, Cho KW, et al. SH2B regulation of growth, metabolism, and longevity in both insects and mammals. Cell Metab 11: 427-437.
    82. Ohtsuka S, Takaki S, Iseki M, Miyoshi K, Nakagata N, et al. (2002) SH2-B is required for both male and female reproduction. Mol Cell Biol 22: 3066-3077.
    83. Lu WC, Chen CJ, Hsu HC, Hsu HL, Chen L The adaptor protein SH2B1beta reduces hydrogen peroxide-induced cell death in PC12 cells and hippocampal neurons. J Mol Signal 5: 17.
    84. Herrington J, Diakonova M, Rui L, Gunter DR, Carter-Su C (2000) SH2-B is required for growth hormone-induced actin reorganization. J Biol Chem 275: 13126-13133.
    85. Yabana N, Shibuya M (2002) Adaptor protein APS binds the NH2-terminal autoinhibitory domain of guanine nucleotide exchange factor Vav3 and augments its activity. Oncogene 21: 7720-7729.
    86. Diakonova M, Gunter DR, Herrington J, Carter-Su C (2002) SH2-Bbeta is a Rac-binding protein that regulates cell motility. J Biol Chem 277: 10669-10677.
    87. Rider L, Tao J, Snyder S, Brinley B, Lu J, et al. (2009) Adapter protein SH2B1beta cross-links actin filaments and regulates actin cytoskeleton. Mol Endocrinol 23: 1065-1076.
    88. Chen L, Carter-Su C (2004) Adapter protein SH2-B beta undergoes nucleocytoplasmic shuttling: implications for nerve growth factor induction of neuronal differentiation. Mol Cell Biol 24: 3633-3647.
    89. Chen L, Maures TJ, Jin H, Huo JS, Rabbani SA, et al. (2008) SH2B1 beta (SH2-B beta) enhances expression of a subset of nerve growth factor-regulated genes important for neuronal differentiation including genes encoding urokinase plasminogen activator receptor and matrix metalloproteinase 3/10. Molecular Endocrinology 22: 454-476.
    90. Maures TJ, Chen L, Carter-Su C (2009) Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 23: 1077-1091.
    91. Nishi M, Werner ED, Oh BC, Frantz JD, Dhe-Paganon S, et al. (2005) Kinase activation through dimerization by human SH2-B. Mol Cell Biol 25: 2607-2621.
    92. Takaki S, Sauer K, Iritani BM, Chien S, Ebihara Y, et al. (2000) Control of B cell production by the adaptor protein lnk. Definition Of a conserved family of signal-modulating proteins. Immunity 13: 599-609.
    93. Iseki M, Kubo-Akashi C, Kwon SM, Yamaguchi A, Takatsu K, et al. (2005) APS, an adaptor molecule containing PH and SH2 domains, has a negative regulatory role in B cell proliferation. Biochem Biophys Res Commun 330: 1005-1013.
    94. Bersenev A, Wu C, Balcerek J, Tong W (2008) Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2. J Clin Invest 118: 2832-2844.
    95. Seita J, Ema H, Ooehara J, Yamazaki S, Tadokoro Y, et al. (2007) Lnk negatively regulates self-renewal of hematopoietic stem cells by modifying thrombopoietin-mediated signal transduction. Proc Natl Acad Sci U S A 104: 2349-2354.
    96. Simon C, Dondi E, Chaix A, de Sepulveda P, Kubiseski TJ, et al. (2008) Lnk adaptor protein down-regulates specific Kit-induced signaling pathways in primary mast cells. Blood 112: 4039-4047.
    97. Fitau J, Boulday G, Coulon F, Quillard T, Charreau B (2006) The adaptor molecule Lnk negatively regulates tumor necrosis factor-alpha-dependent VCAM-1 expression in endothelial cells through inhibition of the ERK1 and -2 pathways. J Biol Chem 281: 20148-20159.
    98. Takizawa H, Nishimura S, Takayama N, Oda A, Nishikii H, et al. Lnk regulates integrin alphaIIbbeta3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo. J Clin Invest 120: 179-190.
    99. Velazquez L, Cheng AM, Fleming HE, Furlonger C, Vesely S, et al. (2002) Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J Exp Med 195: 1599-1611.
    100. DiFiglia M, Marshall P, Covault J, Yamamoto M (1989) Ultrastructural localization of molecular subtypes of immunoreactive neural cell adhesion molecule (NCAM) in the adult rodent striatum. J Neurosci 9: 4158-4168.
    101. Rui L, Herrington J, Carter-Su C (1999) SH2-B, a membrane-associated adapter, is phosphorylated on multiple serines/threonines in response to nerve growth factor by kinases within the MEK/ERK cascade. J Biol Chem 274: 26485-26492.
    102. Gery S, Gueller S, Chumakova K, Kawamata N, Liu L, et al. (2007) Adaptor protein Lnk negatively regulates the mutant MPL, MPLW515L associated with myeloproliferative disorders. Blood 110: 3360-3364.
    103. Greene LA (1978) Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J Cell Biol 78: 747-755.
    104. Rydel RE, Greene LA (1987) Acidic and basic fibroblast growth factors promote stable neurite outgrowth and neuronal differentiation in cultures of PC12 cells. J Neurosci 7: 3639-3653.
    105. Ng YP, Cheung ZH, Ip NY (2006) STAT3 as a downstream mediator of Trk signaling and functions. Journal of Biological Chemistry 281: 15636-15644.
    106. Qian X, Ginty DD (2001) SH2-B and APS are multimeric adapters that augment TrkA signaling. Mol Cell Biol 21: 1613-1620.
    107. Daugherty RL, Gottardi CJ (2007) Phospho-regulation of Beta-catenin adhesion and signaling functions. Physiology (Bethesda) 22: 303-309.
    108. David MD, Yeramian A, Dunach M, Llovera M, Canti C, et al. (2008) Signalling by neurotrophins and hepatocyte growth factor regulates axon morphogenesis by differential beta-catenin phosphorylation. J Cell Sci 121: 2718-2730.
    109. Simoneau M, Coulombe G, Vandal G, Vezina A, Rivard N SHP-1 inhibits beta-catenin function by inducing its degradation and interfering with its association with TATA-binding protein. Cell Signal 23: 269-279.
    110. Akintola AD, Crislip ZL, Catania JM, Chen G, Zimmer WE, et al. (2008) Promoter methylation is associated with the age-dependent loss of N-cadherin in the rat kidney. Am J Physiol Renal Physiol 294: F170-176.
    111. Uemura K, Kihara T, Kuzuya A, Okawa K, Nishimoto T, et al. (2006) Characterization of sequential N-cadherin cleavage by ADAM10 and PS1. Neurosci Lett 402: 278-283.
    112. Reiss K, Maretzky T, Ludwig A, Tousseyn T, de Strooper B, et al. (2005) ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and beta-catenin nuclear signalling. EMBO J 24: 742-752.
    113. Yip PM, Siu CH (2001) PC12 cells utilize the homophilic binding site of L1 for cell-cell adhesion but L1-alphavbeta3 interaction for neurite outgrowth. J Neurochem 76: 1552-1564.
    114. Grana TM, Cox EA, Lynch AM, Hardin J SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during Caenorhabditis elegans gastrulation. Dev Biol 344: 731-744.
    115. Kajimura D, Dragomir C, Ramirez F, Laub F (2007) Identification of genes regulated by transcription factor KLF7 in differentiating olfactory sensory neurons. Gene 388: 34-42.
    116. Kovalenko D, Yang X, Nadeau RJ, Harkins LK, Friesel R (2003) Sef inhibits fibroblast growth factor signaling by inhibiting FGFR1 tyrosine phosphorylation and subsequent ERK activation. J Biol Chem 278: 14087-14091.
    117. Xiong S, Zhao Q, Rong Z, Huang G, Huang Y, et al. (2003) hSef inhibits PC-12 cell differentiation by interfering with Ras-mitogen-activated protein kinase MAPK signaling. J Biol Chem 278: 50273-50282.
    118. Yang RB, Ng CK, Wasserman SM, Komuves LG, Gerritsen ME, et al. (2003) A novel interleukin-17 receptor-like protein identified in human umbilical vein endothelial cells antagonizes basic fibroblast growth factor-induced signaling. J Biol Chem 278: 33232-33238.
    119. Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253-263.
    120. Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, et al. (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126: 4465-4475.
    121. Wakioka T, Sasaki A, Kato R, Shouda T, Matsumoto A, et al. (2001) Spred is a Sprouty-related suppressor of Ras signalling. Nature 412: 647-651.
    122. Tong W, Zhang J, Lodish HF (2005) Lnk inhibits erythropoiesis and Epo-dependent JAK2 activation and downstream signaling pathways. Blood 105: 4604-4612.
    123. Tong W, Lodish HF (2004) Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis. J Exp Med 200: 569-580.
    124. Yokouchi M, Wakioka T, Sakamoto H, Yasukawa H, Ohtsuka S, et al. (1999) APS, an adaptor protein containing PH and SH2 domains, is associated with the PDGF receptor and c-Cbl and inhibits PDGF-indnced mitogenesis. Oncogene 18: 759-767.
    125. Hu JJ, Hubbard SR (2005) Structural characterization of a novel Cbl phosphotyrosine recognition motif in the APS family of adapter proteins. Journal of Biological Chemistry 280: 18943-18949.
    126. Huang X, Li Y, Tanaka K, Moore KG, Hayashi JI (1995) Cloning and characterization of Lnk, a signal transduction protein that links T-cell receptor activation signal to phospholipase C gamma 1, Grb2, and phosphatidylinositol 3-kinase. Proc Natl Acad Sci U S A 92: 11618-11622.
    127. Gueller S, Hehn S, Nowak V, Gery S, Serve H, et al. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol.
    128. Rudkin BB, Lazarovici P, Levi BZ, Abe Y, Fujita K, et al. (1989) Cell cycle-specific action of nerve growth factor in PC12 cells: differentiation without proliferation. EMBO J 8: 3319-3325.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE